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A B S T R A C T

This paper introduces a linear quadratic control scheme for a continuous-time system with observations taken
at discrete times. Particular attention is given to the derivation of the disturbance terms in the model. Control
performance may depend critical on accurate disturbance forecasts. This is the case for building climate control,
where solar rays pass through e.g. windows and deliver significant amounts of energy and the dynamics
can be very fast, fluctuating, and spontaneous. We thus argue that it is critical for control performance to
sufficiently describe and include disturbances in the control description to obtain satisfactory control accuracy.
We suggest and derive in details a control framework based on continuous-time stochastic differential equations
(SDEs) and linear quadratic Gaussian control using an advanced continuous-time disturbance model to supply
disturbance forecasts. The numerical simulation results suggest that control with embedded forecasts handles
uncertainties well and provides up to 26% performance improvements compared to standard disturbance
mitigation techniques. Furthermore, we demonstrate that the quadratic controller has a useful trade-off
between variability in the control signal, economic cost, and variability around the reference point.
1. Introduction

As the share of renewable energy in the electricity grid continues
to grow, related problems become more prominent. Among these prob-
lems are misalignments in energy production and consumption, voltage
overload, congestion, etc. The traditional solution up to modern times
has been to control the production such that the electricity demand is
covered. However, in an efficient implementation of future weather-
driven energy systems, this is no longer an option. One solution is to
focus on demand-response methodologies to unlock and control the
flexibility at the consumer side [1,2]. A lot of recent work therefore
centre around the concept known as energy flexibility [3,4]. The idea is
to control the demand to align it with the production by utilising the
inherent energy storage in households and buildings (such as thermal
mass or stationary batteries), see e.g. [5] for an introduction and spe-
cific application examples. A key technology for enabling this solution
is sophisticated predictive control of buildings. A well described energy
flexibility setup involves a two-level control structure, where the upper-
level controller (e.g. for voltage) computes a price signal which shifts
the overall energy demand of the lower level controllers (e.g. individual
buildings) to times where the CO2-concentration in the electricity mix
is lower [2,6].

Linear quadratic regulation (LQR) is a very well studied and applied
control scheme due to its optimal linear control law and simplicity [7,
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8]. The linear quadratic Gaussian (LQG) regulator extends the LQR
scheme by also considering Gaussian system noise. Hence, LQG deals
with the stochastic case of LQR, which may be closer to reality [9].
Disturbances also constitute an important aspect of control [10]. The
literature identifies the solar radiation and ambient air temperature
as critical factors dictating the heating and cooling needs for build-
ings [11,12]. Model-based predictive control (MPC) for smart energy
systems is an active research area with many examples of e.g. con-
ventional [13], stochastic [14] and robust MPC [15]. The use of LQG
control in the literature is not as widely used for HVAC systems where
often the simpler LQR scheme is used instead [16–20]. Furthermore,
the common standard for mitigating disturbances in control (such as
weather disturbances for buildings) is to apply offset-free regulation,
see e.g. Errouissi et al. [21] or Taylor et al. [22] for applications in
building climate control. Here, one introduces an additional integrating
state that is able to cancel out a constant disturbance. LQG optimal
control minimises the quadratic deviation of a linear transformation
of the states to a set-point. Thus, compared to certainty-equivalent
linear control (such as economic MPC with linear costs on constraint
violations), LQG control inherently deals with uncertainty in a different
manner. The quadratic penalty steers the mean value of the system
state into the reference signal. Linear cost on the other hand steers the
vailable online 18 October 2022
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median onto the reference point [23]. We discuss the differences and
their consequences in more detail later.

For building climate control that uses weather forecasts, one of
the dominating standards is to use meteorological forecasts [24]. Such
forecasts have the advantage of giving relatively accurate forecasts
potentially several days ahead. However, they typically do not include
solar radiation forecasts and tend to be less accurate for short-term pur-
poses [25,26]. Many examples of short-term forecasting models exist
in the literature, such as linear regression-based models [27], artificial
neural networks [28], and more advanced time series techniques [29].
Thilker et al. [10] propose an SDE-based model for predicting key
attributes such as the solar radiation and outdoor air temperature. This
form has the advantage that it fits naturally in the building model
description (which is also formulated using SDEs). This paper shows
the benefits of using an embedded model for disturbance forecasts in
a LQG control setup for a residential building and highlights possible
savings.

1.1. Main aim and contribution of the paper

This paper discusses the role of disturbances in dynamical sys-
tems in great details and relates it to building thermal control. We
derive a zero-order hold discretised system and optimal control prob-
lem from the continuous-time system model of a building undergoing
disturbances from the ambient air temperature and solar radiation.
Furthermore, this paper develops a LQG control framework for a build-
ing thermal model with an embedded disturbance model that supplies
short-term weather forecasts. We carry out a simulation study suggest-
ing that the proposed LQG controller with embedded disturbance model
performs almost as good as a controller that uses perfect disturbance
forecasts.

1.2. Structure and outline of the paper

This paper has the following structure. Section 2 describes the
standard LQG control scheme and derives the optimal control law and
state estimate. Section 3 presents, motivates and derives the optimal
control problem for the extended multi-step LQG control, which also in-
cludes the electricity prices and accounts for the weather disturbances.
Section 5 presents the numerical simulation-based results and Section 6
summarises the findings and discusses future work and possibilities.

2. Continuous-time LQG control with embedded disturbance fore-
casts

This section introduces the continuous-time linear quadratic con-
trol problem. We start by describing the importance of conditional
expectations of the future in predictive control. We also deal with the
discretisation in time of the dynamics and the objective function and
how to deal with disturbances in such discretisation. Zero-order hold
is the dominating discretisation standard. However, such discretisation
introduces additional error terms that may affect the performance, and
thus are important to characterise. In this section, we discuss errors and
their effects on the system.

In this paper, we denote time dependence in subscript 𝒙(𝑡) = 𝒙𝑡
and we use 𝒙𝑘 as short-hand notation for 𝒙𝑡𝑘 . This paper deals with
continuous-discrete time state space models on the following form [30]

d𝒙𝑡 =
(

𝐴𝑐𝒙𝑡 + 𝐵𝑐𝒖𝑡 + 𝐸𝑐𝒅𝑡
)

d𝑡 + 𝐺𝑐d𝝎𝑡 (1a)

d𝒅𝑡 = 𝑓𝑑 (𝒅𝑡, 𝑡)d𝑡 + 𝑔𝑑 (𝒅𝑡, 𝑡)d𝝎𝑡 (1b)

𝒛𝑡 = 𝐻𝒙𝑡 (1c)

𝒚𝑘 = 𝐶𝒙𝑘 + 𝒗𝑘 , 𝒗𝑘 ∼ 𝑁(0, 𝛴) (1d)

where 𝒙, 𝒖, and 𝒅 are the system, input, and disturbance states,
2

respectively. 𝐴𝑐 , 𝐵𝑐 and 𝐸𝑐 are matrices governing the state evolution, a
input, and disturbances, respectively. 𝝎𝑡 is standard Brownian motion,
𝒚𝑘 is the observation, 𝒗𝑘 is the observation noise, and 𝒛𝑡 is the control
variable. The disturbance model in (1b) is non-linear and can be used to
forecast the disturbance states. Had the disturbances 𝒅𝑡 been described
by a linear model, we could couple the building and weather states into
a single state space model [𝒙⊺𝑡 ,𝒅

⊺
𝑡 ]

⊺. The weather is, however, governed
by strong non-linearities and cannot be treated as a linear system,
which is why it is necessary to uncouple them. Section 4.2 elaborates
on this.

2.1. Relation between forecasting and control

In the following, let 𝒛𝑡 be a continuous-time stochastic process (not
necessarily the same as in Eq. (1)). The following term measures the
expected 𝑝-order moment between 𝒛𝑡 and a signal 𝒈𝑡

E[‖𝒛𝑡 − 𝒈𝑡‖𝑝𝑝 |𝑘] , (2)

where ‖ ⋅ ‖𝑝 is the usual 𝑝-norm of vectors, 𝑝 ≥ 1, and 𝑘 =
{𝑦0, 𝑦1,… , 𝑦𝑘} is all historic observations up till time 𝑡𝑘. Putting 𝑝 = 2,
we obtain the non-central second order moment. Such an objective
measures the variance of a process. Now, let 𝒈𝑡 be controllable in the
sense given in [31]. Given information until time 𝑡𝑘, we can write the
minimum-variance optimal control problem as

min
𝒈𝑡

𝜙𝑘 = ∫

𝑡𝑘+𝑇

𝑡𝑘
E[‖𝒛𝑡 − 𝒈𝑡‖22|𝑘] d𝑡 , (3)

The optimal minimiser of the minimum-variance problem (3) can be
shown to be the conditional expectation, 𝒈𝑡 = E[𝒛𝑡|𝑘]:

E
[

‖𝒛𝑡 − 𝒈𝑡‖22 |𝑘
]

= E[‖𝒛𝑡 − 𝒈𝑡 + E
[

𝒛𝑡|𝑘
]

− E
[

𝒛𝑡|𝑘
]

‖

2
2 |𝑘]

= V
[

𝒛𝑡|𝑘
]

+ ‖E[𝒛𝑡|𝑘] − 𝒈𝑡‖22 ,

where V
[

𝒛𝑡|𝑘
]

denotes the conditional variance with respect to 𝑘.
he above attains its minimum exactly for 𝒈𝑡 = E[𝒛𝑡|𝑘]. This implies
hat we need to use conditional expectations to solve stochastic control
roblems with a quadratic cost function as in (3). Hence, we need to
stimate the following

[{𝒛𝑡 ∶ 𝑡 ≥ 𝑡𝑘} |𝑘] = {𝒛̂𝑡|𝑡𝑘 ∶ 𝑡 ≥ 𝑡𝑘} . (4)

or linear systems with Gaussian noise, the Kalman filter is an optimal
stimator of the conditional expectation. In a discrete form (which we
erive in Section 2.2), the continuous-time system in Eq. (1) can be
ritten

[𝒙𝑡𝑘+1 |𝑘] = 𝐴𝒙̂𝑘|𝑘 + 𝐵𝒖𝑘 + 𝐸𝒅̂𝑘|𝑘 . (5)

ince the conditional expectation of the system state depends on dis-
urbances, 𝒅𝑡, we also need forecasts of the conditional expectations of
hese to do optimal predictive control. That is, we need to supply the
ollowing forecasts of the disturbances to the optimal control problem

[{𝒅𝑘+𝑖}𝑁−1
𝑖=0 |𝑘] = {𝒅̂𝑘+𝑖|𝑘}𝑁−1

𝑖=0 . (6)

Note that putting 𝑝 = 1 in (2) yields the absolute value, for which
he median of 𝒛𝑡 is the optimal minimiser. By tilting the absolute value
unction appropriately, certain quantiles become the minimiser. This
nowledge can be very useful in forming the right objective function
o mimic the desired behaviour of the system. It might be that one side
f the reference trajectory is a very expensive operational area, and
hus shaping the objective to make the reference trajectory align with
he 99% quantile may be appropriate.

The quadratic objective function thus measures the squared norm of
eviation between the conditional expectation of the stochastic process

nd the signal 𝒈𝑡. However, as we shall also do in the present paper, it is
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very common to include additional terms in the quadratic cost function
in (2) [23] such that the problem becomes

𝜙𝑘 = ∫

𝑡𝑘+𝑇

𝑡𝑘
E[‖𝒛𝑡 − 𝒓𝑡‖2𝑄
⏟⏞⏞⏞⏟⏞⏞⏞⏟

objective

+ ‖𝒖̄𝑡 − 𝒖𝑡‖2𝑅
⏟⏞⏞⏞⏟⏞⏞⏞⏟
regularisation

+ 𝒄⊺𝑡 𝒖𝑡
⏟⏟⏟

economic
cost

|𝑘] (7)

where 𝒓𝑡 is a reference trajectory, 𝒖𝑡 is the control signal, and 𝒄𝑡 is
a cost related to the input at time 𝑡. The subscripts 𝑄 and 𝑅 denotes
the weighted 2-norm (with weights 𝑄 and 𝑅). For energy systems, this
objective is appropriate for stabilising e.g. voltages in grids, aligning
energy consumption of building stocks etc. The first regularisation
term reflects the cost of the input deviating too much from a desired
reference point. The second term typically reflects some economic costs
related to input in time. In the context of building thermal control using
a heat pump, the latter can be the electricity price related to the heat
pump operations.

2.2. Discretisation of the continuous-time dynamics

In this section, we derive a discretisation of the continuous time
dynamical system in (1). Due to the discrete nature of the way com-
puters perform numerics, it is necessary to somehow discretise the
optimisation problem in (7). For energy systems, the disturbances
typically play an important role and are themselves encumbered with
uncertainty. We shall therefore put extra attention towards how to
handle the disturbance term in (1), 𝐸𝑐𝒅𝑡, in the discretisation.

Let 𝑇𝑠 be the sample time between the control points, 𝑇𝑠 = 𝑡𝑘+1 −
𝑡𝑘. We assume that the input 𝒖 is constant during the time intervals
[𝑡𝑘, 𝑡𝑘+1[ for all 𝑘 ∈ N, i.e. zero-order hold. The solution to 𝒙𝑡 in (1)
gets the form

𝒙𝑡𝑘+1 = 𝐴𝒙𝑡𝑘 + 𝐵𝒖𝑘 + ∫

𝑡𝑘+1

𝑡𝑘
exp

(

𝐴𝑐 (𝑡𝑘+1 − 𝜏)
)

𝐸𝑐𝒅𝜏d𝜏 + 𝝃𝑘, (8)

where the matrices 𝐴, 𝐵 and process noise 𝝃𝑘 are defined by

𝐴 = exp
(

𝐴𝑐𝑇𝑠
)

,

𝐵 = ∫

𝑇𝑠

0
exp

(

𝐴𝑐𝜏
)

𝐵𝑐d𝜏 ,

𝝃𝑘 = ∫

𝑡𝑘+1

𝑡𝑘
exp

(

𝐴𝑐 (𝑡𝑘+1 − 𝜏)
)

𝐺𝑐d𝝎(𝜏) .

(9)

𝐴 and 𝐵 in (9) have known closed-form solutions and are easy to
compute. However, it is not straightforward how to deal with the
integral ∫ 𝑡𝑘+1

𝑡𝑘
exp

(

𝐴𝑐 (𝑡𝑘+1 − 𝜏)
)

𝐸𝑐𝒅𝜏d𝜏 in (8). The rest of this section
deals with this integral when disturbance forecasts are supplied as
zero-order hold values.

As Section 4 describes, the embedded disturbance model in (1b)
estimates the mean value of the disturbances between time samples
[𝑡𝑘, 𝑡𝑘+1[, that is

𝒅̄𝑘 = 𝒅̂𝑘|𝑘 + 𝝐𝑘 , 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1[ . (10)

𝒅̄𝑘 is the true mean value of the disturbances, 𝒅̂𝑘|𝑘 = E[𝒅̄𝑘 |𝑘] is
the conditional mean value supplied by the disturbance model given
observations up till time 𝑡𝑘, and 𝝐𝑘 is i.i.d. Gaussian distributed white
noise. To rewrite the system in (1) with the weather predictions, we
can rewrite the integral in (8) as

∫

𝑡𝑘+1

𝑡𝑘
exp

(

𝐴𝑐 (𝑡𝑘+1 − 𝜏)
)

𝐸𝑐
(

𝒅𝜏 + 𝒅̄𝑘 − 𝒅̄𝑘
)

d𝜏 , (11a)

= 𝐸𝒅̄𝑘 + ∫

𝑡𝑘+1

𝑡𝑘
exp

(

𝐴𝑐 (𝑡𝑘+1 − 𝜏)
)

𝐸𝑐
(

𝒅𝜏 − 𝒅̄𝑘
)

d𝜏 , (11b)

= 𝐸𝒅̂𝑘|𝑘 + 𝐸𝝐𝑘 + ∫

𝑡𝑘+1

𝑡𝑘
exp

(

𝐴𝑐 (𝑡𝑘+1 − 𝜏)
)

𝐸𝑐
(

𝒅𝜏 − 𝒅̄𝑘
)

d𝜏 , (11c)

= 𝐸𝒅̂ + 𝐸𝝐 + 𝜻 , (11d)
3

𝑘|𝑘 𝑘 𝑘
Fig. 1. An illustration of the calculations of the model discretisation. The disturbance
model estimates the mean value in the time sample [𝑡𝑘 , 𝑡𝑘+1]. The slanted hatched area
indicates the factor 𝒅𝑡 − 𝒅̄𝑘 and the vertical hatched area shows the exponential factor
(in 1 dimension) in the integral in (11c).

≈ 𝐸𝒅̂𝑘|𝑘 + 𝐸𝝐𝑘 + 0 , (11e)

where 𝐸 = ∫ 𝑇𝑠
0 exp

(

𝐴𝑐𝜏
)

𝐸𝑐d𝜏. In (11e), it is assumed (wrongfully) that
the disturbances act constantly on the system such that 𝒅𝜏 − 𝒅̄𝑘 = 0 and
the integral 𝜻𝑘 = ∫ 𝑡𝑘+1

𝑡𝑘
exp

(

𝐴𝑐 (𝑡𝑘+1 − 𝜏)
)

𝐸𝑐
(

𝒅𝜏 − 𝒅̄𝑘
)

d𝜏 = 0 vanishes.
The term 𝜻𝑘 can be thought of as the error related to the zero-order
hold discretisation. Fig. 1 depicts the calculations involved in (11). The
hatched areas indicate the two factors in the integral in (11c) between
two time samples 𝑡𝑘 and 𝑡𝑘+1. It becomes evident that the integral of
the product of the two terms in general is not zero. Unfortunately, the
disturbance processes are strongly non-linear and behave indescribably,
which implies that 𝒅𝜏 − 𝒅̄𝑘 becomes correlated in time (as Fig. 1
illustrates). For this reason, the easiest solution is to neglect the error
as in (11e). Since the uncertainty of the disturbances is described by
Brownian motions, it is possible to characterise the uncertainty of the
disturbances between time samples using a Brownian bridge. In such a
setup, by conditioning the Brownian bridge on attaining the estimated
disturbance values at times {𝑡𝑘, 𝑡𝑘+1}, the disturbance process between
the time steps is Gaussian. It is then straight forward to compute
uncertainties and densities for the disturbances at all points in time.

Inserting (11e) into (8) gives us the system

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 + 𝐸𝒅̂𝑘|𝑘 + 𝐸𝝐𝑘 + 𝝃𝑘 , (12)

with 𝒙𝑘 = 𝒙𝑡𝑘 and 𝝐𝑘 ∼ 𝑁(0,𝑊1) and 𝝃𝑘 ∼ 𝑁(0,𝑊2). 𝑊1 is the
covariance of the uncertainty related to the disturbance estimate and
𝑊2 = ∫ 𝑇𝑠

0 exp
(

𝐴𝑐𝜏
)

𝐺𝑐𝐺⊤
𝑐 exp

(

𝐴⊤
𝑐 𝜏

)

d𝜏. Aggregating the noise terms,
𝒘𝑘 = 𝐸𝝐𝑘 + 𝝃𝑘, gives the conventional discrete-time stochastic state
space system

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 + 𝐸𝒅̂𝑘|𝑘 +𝒘𝑘. (13)

It immediately reveals that the computation of E[𝒙𝑘+𝑖 |𝑘], 𝑖 = 1,… , 𝑁
requires conditional mean forecasts of the disturbances.

2.2.1. Error quantification of the discretisation
Since 𝜻𝑘 is difficult to determine, the easiest solution is to disre-

gard it. But can we say something about the error we make by this
simplification? The discretised system (with all its terms) gets the form:

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 + 𝐸𝒅̂𝑘|𝑘 + 𝐸𝝐𝑘 + 𝝃𝑘 + 𝜻𝑘 , (14)

where 𝜻𝑘 = ∫ 𝑡𝑘+1
𝑡𝑘

exp
(

𝐴𝑐 (𝑡𝑘+1 − 𝜏)
)

𝐸𝑐
(

𝒅𝜏 − 𝒅̄𝑘
)

d𝜏. The error term 𝜻𝑘
can be bounded by the following:

‖𝜻𝑘‖22 ≤
𝑡𝑘+1

‖ exp
(

𝐴𝑐 (𝑡𝑘+1 − 𝜏)
)

‖

2
𝐹 d𝜏 ⋅ ‖𝐸‖

2
𝐹
∫𝑡𝑘
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Fig. 2. Due to the Gaussian noise acting on the system, we do not know the
deterministic position of the system — instead, the position is given by a Gaussian
density, centred around 𝒙̂𝑘|𝑘.

⋅max
𝜏

{‖𝑑𝜏 − 𝑑𝑘‖
2
2} (15a)

≤𝛥𝑡𝑘 ⋅max
𝜏

{‖ exp
(

𝐴𝑐 (𝑡𝑘+1 − 𝜏)
)

‖

2
𝐹 } ⋅ ‖𝐸𝑐‖

2
𝐹

⋅max
𝜏

{‖𝑑𝜏 − 𝑑𝑘‖
2
2} (15b)

The first two norms of (15b) are related to the singular values of
the dynamics 𝐴 and 𝐸—i.e. if the dynamics are fast, the error might
be larger (due to the matrix exponential that acts as a weighting
factor) and vice versa. The last term relates the error to the maximum
quadratic variation between the continuous process 𝑑𝜏 and its mean
value in the interval [𝑡𝑘, 𝑡𝑘+1[. Note that the error term ‖𝜻𝑘‖22 scales
linearly in time, in line with the variance of a standard Brownian
motion. Also note that had the weighting factor exp

(

𝐴𝑐 (𝑡𝑘+1 − 𝜏)
)

not
been present, the integral would simply vanish. It is hence the system’s
dynamical influence that causes the error of the zero order hold.

2.3. Discretisation of the continuous-time objective function

The objective function has the purpose of weighting the perfor-
mance of control solutions to make them comparable. E.g., typically,
the purpose of controlling the indoor air temperature of a building is
to maintain a comfortable temperature while minimising the electricity
consumption and/or price (and perhaps more criteria such as variations
in the input signal). It is thus a tuning problem to correctly weight the
contributions to mimic desired behaviour.

In the previous subsection, we obtained the system on a discrete-
time form using a zero-order hold discretisation scheme. This has
the advantage of parameterising the input signal as a set of values
{𝒖𝑘+𝑖}𝑁−1

𝑖=0 , which is numerically tractable in an optimisation problem.
Given information up until time 𝑡𝑘, 𝑘 = {𝒚0, 𝒚1,… , 𝒚𝑘} the finite-
horizon continuous-time LQG control objective function from Eq. (7)
gets the form

E

[

∫

𝑡𝑘+𝑇

𝑡𝑘

1
2
(𝒛𝑡 − 𝒓𝑡)⊺𝑄(𝒛𝑡 − 𝒓𝑡)

+ 1
2
(𝒖̄𝑡 − 𝒖𝑡)⊺𝑅(𝒖̄𝑡 − 𝒖𝑡) + 𝒄⊺𝑡 𝒖𝑡d𝑡

|

|

|

|

𝑘

]

,

(16)

where 𝒓𝑡 and 𝒖̄𝑡 are reference trajectories. Note that we employ the
weighted 2-norm. How to discretise the objective function is not
straight forward and can be done in multiple ways. In general, the dis-
cretisation is an approximation of the continuous-time objective. How-
ever, in the linear-quadratic case, an exact discretisation exists [32].
4

The derivation is tedious, though, and if the time between samples and
control inputs is small, the integral can be approximated well by an
Euler discretisation, i.e. evaluating the objective function point-wise.
Let

𝑡𝑘 ≤ 𝑡𝑘+1 ≤ ⋯ ≤ 𝑡𝑘+𝑁 = 𝑡𝑘 + 𝑇 (17)

be a partition of the future control times of the system. We discretise
the objective function point-wise such that the integral in (16) becomes
a sum over the values at the time points in (17)

𝜙 =E

[ 𝑘+𝑁−1
∑

𝑖=𝑘

1
2
(𝒛𝑖 − 𝒓𝑖)⊺𝑄(𝒛𝑖 − 𝒓𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜙1

+ 1
2
(𝒖̄𝑖 − 𝒖𝑖)⊺𝑅(𝒖̄𝑖 − 𝒖𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜙2

+𝒄⊺𝑖 𝒖𝑖
|

|

|

|

𝑘

]

.

(18)

Using that 𝒛𝑖 = 𝐻𝒙𝑖, the first term in the sum simplifies to

𝜙1 =
𝑘+𝑁−1
∑

𝑖=𝑘

1
2
𝒙⊤𝑖 𝑄

′𝒙𝑖 + 𝒔⊤𝑖 𝒙𝑘 +
1
2
𝒓⊤𝑘𝑄𝒓𝑘 (19)

where 𝑄′ = 𝐻⊤𝑄𝐻 and 𝒔⊤𝑖 = −𝒓⊤𝑖 𝑄𝐻 . The second part of the objective
function equivalently has the form

𝜙2 =
𝑘+𝑁−1
∑

𝑖=𝑘

1
2
𝒖⊤𝑖 𝑅𝒖𝑖 + 𝒖̄⊤𝑖 𝑅𝒖𝑖 +

1
2
𝒖̄⊤𝑖 𝑅𝒖̄𝑖 (20)

The combined discretised objective function (where we omit terms that
are independent of the system state or the input signal) is

𝜙𝑑 =E

[ 𝑘+𝑁−1
∑

𝑖=𝑘

1
2
𝒙⊤𝑖 𝑄

′𝒙𝑖 + 𝒔⊤𝑖 𝒙𝑖

+ 1
2
𝒖⊤𝑖 𝑅𝒖𝑖 + 𝒖̄⊤𝑖 𝑅𝒖𝑖 + 𝒄⊤𝑖 𝒖𝑖

|

|

|

|

𝑘

]

.

(21)

3. Solution to the LQG control problem with embedded distur-
bance model

The previous section presented and derived the discretisation of
the system dynamics and objective function to make computations
tractable for the computer. There are multiple ways to solve the LQG
optimal control problem. Singh and Pal [33] derive an optimal linear
feedback law based on the current state and future disturbance input —
an extension to the classical LQR feedback law. However, such laws are
not able to deal with constraints, which requires (in general) numerical
solvers to solve. In this section, we derive solutions to the finite horizon
constrained LQG optimal control problem.

When dealing with stochastic systems as in (1) governed by both
Gaussian system and observation noise, the LQG control problem can
be divided into two sub-problems due to the separation principle (under
certain conditions) [34]. Given a noisy observation of the system, 𝒚𝑘,
the steps are

1. Reconstruct the system states, 𝒙𝑘, using the regular Kalman filter
(which is an optimal state estimator in the linear case with
Gaussian noise), i.e. 𝒙̂𝑘|𝑘 = E[𝒙𝑘|𝑘]

2. Solve the LQG optimal control problem using the reconstruction
as a certainty-equivalent state estimate.

The LQR and LQG optimal control problems are special cases when it
comes to their solutions and ability to separate the estimation and opti-
mal control problems. This section presents and solves both problems.
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3.1. State estimation (filter)

Due to the Gaussian error term in (13), 𝒘𝑘 = 𝐸𝝐𝑘 + 𝝃𝑘, the system
experiences random forces that pushes it away from its deterministic
path given by the linear system in Eq. (5). We thus do not know the
exact position of the system. To estimate the system state, filters and ob-
servers are common choices [30,35]. However, in case of a linear state
space model with Gaussian process noise, the Kalman filter provides
an optimal state estimator. It estimates a distribution of the system state
at time 𝑡𝑘, (𝒙𝑘 |𝑘) ∼ 𝑁(𝒙̂𝑘|𝑘, 𝑃𝑘|𝑘) given the past observations. Fig. 2
depicts the distributional development in the Kalman filter update: We
start out with an initial state estimate at time 𝑡𝑘 given by a distribution
𝑁(𝒙̂𝑘|𝑘, 𝑃𝑘|𝑘). The system development gives a predicted estimate of
the successive state, (𝒙𝑘+1 |𝑘) ∼ 𝑁(𝒙̂𝑘+1|𝑘, 𝑃𝑘+1|𝑘). When the next
observation, 𝒚𝑘+1, becomes available, the Kalman filter combines the
system prediction and the observation at time 𝑡𝑘+1, to compute the
optimal system state estimate, (𝒙𝑘+1 |𝑘+1) ∼ 𝑁(𝒙̂𝑘+1|𝑘+1, 𝑃𝑘+1|𝑘+1).

Algorithm 1 lists the necessary computational steps in the Kalman
filter to update the system state distribution.

Algorithm 1 Kalman Filter

require: 𝒚𝑘, 𝒖̂𝑘−1|𝑘−1, 𝒅𝑘−1|𝑘−1, 𝒙̂𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1

Prediction:
Compute one-step Kalman predictions
𝒙̂𝑘|𝑘−1 = 𝐴𝒙̂𝑘−1|𝑘−1 + 𝐵𝒖̂𝑘−1|𝑘−1 + 𝐸𝒅𝑘−1|𝑘−1
𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴⊤ +𝑄

Filter:
Compute estimated process noise and Kalman gain
𝛴𝑘|𝑘−1 = 𝐶𝑃𝑘|𝑘−1𝐶⊤ + 𝛴
𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶⊤𝛴−1

𝑘|𝑘−1

Compute filtered estimates
𝒚̂𝑘|𝑘−1 = 𝐶𝒙̂𝑘|𝑘−1
𝒙̂𝑘|𝑘 = 𝒙̂𝑘|𝑘−1 +𝐾𝑘(𝒚𝑘 − 𝒚̂𝑘|𝑘−1)
𝑃𝑘|𝑘 = (𝐼 −𝐾𝑘𝐶)𝑃𝑘|𝑘−1(𝐼 −𝐾𝑘𝐶)⊤ +𝐾𝑘𝛴𝐾⊤

𝑘

return 𝒙̂𝑘|𝑘, 𝑃𝑘|𝑘

3.2. Solution to the LQG optimal control problem

Consider the following finite horizon, inequality constrained opti-
mal control problem given 𝒙̂𝑘|𝑘 and {𝒅̂𝑘+𝑗|𝑘}𝑁−1

𝑗=0 ,

𝑼∗
𝑘
|

|

|

𝒙̂𝑘|𝑘, {𝒅̂𝑘+𝑗|𝑘}𝑁−1
𝑗=0 = arg min

𝒖0 ,…,𝒖𝑁−1
𝜙𝑘 (22a)

s.t. 𝒙̂𝑖+1 = 𝐴𝒙̂𝑖 + 𝐵𝒖̂𝑖 + 𝐸𝒅̂𝑘+𝑖|𝑘, (22b)

𝒙̂0 = 𝒙̂𝑘|𝑘 (22c)

𝒖min ≤ 𝒖𝑖 ≤ 𝒖max (22d)

𝜟𝒖min ≤ 𝜟𝒖𝑖 ≤ 𝜟𝒖max (22e)

𝑖 = 0,… , 𝑁 − 1, (22f)

ith the discrete-time objective function

𝑘 = E

[𝑁−1+𝑘
∑

𝑖=𝑘

1
2
𝒙̂⊤𝑖 𝑄

′𝒙̂𝑖 + 𝒔⊤𝑖 𝒙̂𝑖+

1
2
𝒖⊤𝑖 𝑅𝒖𝑖 − 𝒖̄⊤𝑖 𝑅𝒖𝑖 + 𝒄⊤𝑖 𝒖𝑖

|

|

|

|

𝑘

]

.

(23)

We solve the optimal control problem in (22) by introducing a notation
for the system for all points in time from 𝑘 = 0,… , 𝑁 − 1.

𝑿̂ = 𝛷𝒙̂ + 𝛤 𝑼 + 𝛤 𝑫̂ (24)
5

𝑘+1 𝑘|𝑘 𝑢 𝑘 𝑑 𝑘
where the matrices and vectors are

𝑿̂𝑘+1 =
[

𝒙̂⊤𝑘+1|𝑘,… , 𝒙̂⊤𝑘+𝑁|𝑘

]⊤

𝑼𝑘 =
[

𝒖⊤𝑘|𝑘,… , 𝒖⊤𝑘+𝑁−1|𝑘

]⊤

𝑫̂𝑘 =
[

𝒅̂⊤
𝑘|𝑘,… , 𝒅̂⊤

𝑘+𝑁−1|𝑘

]⊤

𝑺𝑘 =
[

𝒔⊤𝑘 , 𝒔
⊤
𝑘+1,… , 𝒔⊤𝑘+𝑁−1

]⊤

𝛷 =
[

𝐴⊤, (𝐴2)⊤,… , (𝐴𝑁 )⊤
]⊤

𝛤𝑢 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐵 0 … 0
𝐴𝐵 𝐵 … 0
𝐴2𝐵 𝐴𝐵 ⋱ ⋮
⋮ ⋮ ⋱ 0

𝐴𝑁−1𝐵 𝐴𝑁−2𝐵 … 𝐵

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝛤𝑑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐸 0 … 0
𝐴𝐸 𝐸 … 0
𝐴2𝐸 𝐴𝐸 ⋱ ⋮
⋮ ⋮ ⋱ 0

𝐴𝑁−1𝐸 𝐴𝑁−2𝐸 … 𝐸

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(25)

We also introduce the vector containing the prediction errors 𝜺𝑘+𝑖|𝑘 =
𝒙̂𝑘+𝑖|𝑘 − 𝒙𝑘+𝑖, 𝑖 ∈ N, which are due to the Gaussian error term in (13),
𝒘𝑘 = 𝐸𝝐𝑘 + 𝝃𝑘,

𝜺𝑘 =
[

𝜺⊤𝑘+1|𝑘,… , 𝜺⊤𝑘+𝑁|𝑘

]⊤
(26)

Inserting the new notation in to the objective function ultimately iso-
lates the stochasticity to the prediction errors (the predictions and pre-
diction errors are independent under the linear quadratic assumption)

𝜙𝑘 = E

[

1
2
(

𝑿̂𝑘+1 + 𝜺
)⊤ 𝑄̄

(

𝑿̂𝑘+1 + 𝜺𝑘
)

+ 𝑺⊤
𝑘
(

𝑿̂𝑘+1 + 𝜺𝑘
)

+ 1
2
𝑼⊤

𝑘 𝑅̄𝑼𝑘 − 𝑼̄⊤
𝑘 𝑅̄𝑼𝑘 + 𝑪̄⊤

𝑘𝑼𝑘
|

|

|

|

𝑘

]

𝑘 = 1
2
𝑿̂⊤

𝑘+1𝑄̄𝑿̂𝑘+1 + 𝑺⊤
𝑘 𝑿̂𝑘+1 +

1
2
𝑼⊤

𝑘 𝑅̄𝑼𝑘 − 𝑼̄⊤
𝑘 𝑅̄𝑼𝑘

+ 𝑪̄⊤
𝑘𝑼𝑘 + E

[

1
2
𝜺⊤𝑘 𝑄̄𝜺𝑘 + 𝑺⊤

𝑘 𝜺𝑘
|

|

|

|

𝑘

]

,

(27)

where 𝑄̄ = diag(𝑄′,… , 𝑄′), 𝑅̄ = diag(𝑅,… , 𝑅), and 𝑪̄𝑘 =
[

𝒄⊤𝑘 ,… , 𝒄⊤𝑘+𝑁−1

]⊤
. Since the last term does not depend on 𝑼 , we can

omit it in the optimisation problem. The next step is to insert (24) into
the cost function

𝜙𝑘 = 1
2
(

𝛷𝒙̂𝑘|𝑘 + 𝛤𝑢𝑼𝑘 + 𝛤𝑑𝑫̂𝑘
)⊤ 𝑄̄

(

𝛷𝒙̂𝑘|𝑘 + 𝛤𝑢𝑼𝑘

+ 𝛤𝑑𝑫̂𝑘

)

+𝑺⊤
𝑘

(

𝛷𝒙̂𝑘|𝑘 + 𝛤𝑢𝑼𝑘 + 𝛤𝑑𝑫̂𝑘

)

+ 1
2
𝑼⊤

𝑘 𝑅̄𝑼𝑘 − 𝑼̄⊤
𝑘 𝑅̄𝑼𝑘 + 𝑪̄⊤

𝑘𝑼𝑘 .

(28)

otice that we eliminated the equality constraints (22b) since they are
ow embedded in the cost function. We can write the objective, 𝜙𝑘, as
quadratic function in 𝑼𝑘

̃𝑘 = 1
2
𝑼⊤

𝑘𝑃𝑼𝑘 + 𝒒⊤𝑼𝑘 , (29)

ith the matrix and vector
= (𝛤⊤

𝑢 𝑄̄𝛤𝑢 + 𝑅̄)

𝒒 = (𝛤⊤
𝑢 𝑄̄𝛷𝒙̂𝑘|𝑘 + 𝛤⊤

𝑢 𝑄̄𝛤𝑑𝑫̂𝑘 + 𝛤⊤
𝑢 𝑺𝑘 + 𝑪̄𝑘 − 𝑅̄𝑼̄𝑘)

hat is, the optimisation problem in (22) is equivalent to the following
onvex quadratic programme
∗
𝑘
|

|

|

𝒙̂𝑘|𝑘, {𝒅̂𝑘+𝑗|𝑘}𝑁−1
𝑗=0 = arg min

𝒖0 ,…,𝒖𝑁−1
𝜙̃𝑘

s.t. 𝒖min ≤ 𝒖𝑖 ≤ 𝒖max

𝜟𝒖min ≤ 𝜟𝒖𝑖 ≤ 𝜟𝒖max

(30)
𝑖 = 0,… , 𝑁 − 1
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Fig. 3. A diagram of the smart building model and the interactions. The room air
exchanges heat with the floor and the ambient air and is heated by electrical heaters.
The solar radiation enters through the windows and typically delivers significant
amounts of heat.

Fig. 4. Two illustrations of how the climatic processes interact and how the disturbance
odel is designed. In 4(a) the two components of the solar radiation is displayed: The

lobal radiation consists of direct- and diffuse radiation where the latter is reflected
ff from objects in the atmosphere. In 4(b), the interactions of the components near
arth’s surface is depicted. The net radiation is the net input of short- and long wave
adiation. It plays a crucial role in describing the ambient air temperature. The sea
urrounding Denmark highly regulates the air temperature. The heat capacity of water
s much larger compared to that of air, and the sea temperature (𝑇𝑠) thus acts as a

slow and regulating component in the model. 𝑇∞ represents a constant heat loss of the
air.

with 𝜙̃𝑘 as in (29). The objective, 𝜙̃𝑘, is convex and enables fast
numerical solvers such as interior-point methods, see e.g. [36]. Had
the problem been unconstrained, the solution to the quadratic optimal
control problem would have been given in closed-form [37]. This has
the advantages of being fast to evaluate and gives useful insights into
how the solution depends on the various parameters.
6

i

Algorithm 2 MPC Algorithm

require: 𝒚𝑡𝑘 , 𝒖̂𝑘−1|𝑘−1, 𝒙̂𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1,
𝒅𝑘−1|𝑘−1

Filter:
Given 𝒚𝑡𝑘 , 𝒖̂𝑘−1|𝑘−1, 𝒙̂𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1,
𝒅𝑘−1|𝑘−1, compute the filtered moments of the current system state;
𝒙̂𝑘|𝑘 and 𝑃𝑘|𝑘

Disturbance forecasts:
Given 𝒅𝑘−1|𝑘−1 compute {𝒅𝑘+𝑖|𝑘}𝑁𝑖=0 using the disturbance model in
(1b)

Optimal control:
Given 𝒙̂𝑘|𝑘, 𝒖̂𝑘−1|𝑘−1, and {𝒅𝑘+𝑖|𝑘}𝑁𝑖=0 solve the optimal control
problem in (30) to obtain {𝒖̂𝑘+𝑖|𝑘}𝑁−1

𝑖=0

return 𝒖̂𝑘|𝑘, 𝒙̂𝑘|𝑘, 𝑃𝑘|𝑘

The LQG control framework is now given by a filtering- and an
optimisation step. Given an observation, 𝒚𝑘, we reconstruct the current
state, 𝒙̂𝑘|𝑘, in the filtering step, and solve the optimal control prob-
lem to retrieve the optimal input. In the MPC algorithm, we require
an addition computational step to compute the disturbance forecasts.
Algorithm 2 lists the LQG control framework.

4. The smart building and disturbance model

In the numerical case study (to simulate the performance of con-
trollers using different disturbance forecasting schemes) we consider
the heat dynamics of a building given by a model based on SDEs. Fur-
thermore, we use a SDE-based disturbance model to supply forecasts.
This section introduces both models briefly.

4.1. The smart building model

This paper considers a model based on SDEs with a linear model
for the building heat dynamics and a non-linear model for the distur-
bances. The SDE representation in (1) provides a natural way to express
physical systems due to the continuous-time formulation.

This paper uses the continuous-time heat dynamics model of a build-
ing identified and estimated by [38]. The authors show that a sufficient
model for describing the heat dynamics of the specific building involves
two heat accumulating media temperatures: the room air and the floor.
We denote the state variable 𝒙(𝑡) =

[

𝑇𝑟(𝑡), 𝑇𝑓 (𝑡)
]𝑇 , where 𝑇𝑟 and 𝑇𝑓

re the room air and floor temperature, respectively. Furthermore, the
uthors identify how the important disturbances act on the smart build-
ng; that is the ambient air temperature, 𝑇𝑎(𝑡), and the solar radiation,
𝑠(𝑡). Lastly the room is equipped with an electrical heater to supply
eat. Fig. 3 illustrates the heat dynamics and interactions between the
odel components. Mathematically, the following matrices govern the

ontinuous-time smart building model on linear form as in (1)

𝑐 =
⎡

⎢

⎢

⎣

− 1
𝑟𝑓𝑟𝐶𝑟

− 1
𝑟𝑟𝑎𝐶𝑟

1
𝑟𝑓𝑟𝐶𝑟

1
𝑟𝑓𝑟𝐶𝑓

− 1
𝑟𝑓𝑟𝐶𝑓

⎤

⎥

⎥

⎦

, 𝐵𝑐 =

[

1
𝐶𝑟
0

]

,

𝐸𝑐 =

[ 1
𝑟𝑟𝑎𝐶𝑟

𝐴𝑤
(1−𝑝)
𝐶𝑟

0 𝐴𝑤
𝑝
𝐶𝑓

]

, 𝐺𝑐 =
[

𝜎1 0
0 𝜎2

]

,

𝐶 =
[

1 0
]

, 𝐻 =
[

1 0
]

(31)

ith the variables 𝒙(𝑡) =
[

𝑇𝑟(𝑡), 𝑇𝑓 (𝑡)
]𝑇 , 𝑢(𝑡) = 𝜙ℎ(𝑡), 𝒅(𝑡) =

[

𝑇𝑎(𝑡), 𝜙𝑠(𝑡)
]𝑇 .

able 1 gives the values and descriptions of the parameters in (31). The
odel in (31) is of course very simple and could be extended to include
any effects such as the relative humidity or CO2-levels, both of which

mpacts the indoor climate [39].
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Fig. 5. The advanced dynamical disturbance model compared to persistent forecasts and true disturbances.
𝑐

Table 1
The values used in the model for a single smart
building in (31).
Parameter Value Unit

𝐶𝑟 810 kJ/◦C
𝐶𝑓 3315 kJ/◦C
𝑟𝑟𝑎 0.036 kJ/(◦C h)
𝑟𝑓𝑟 0.0016 kJ/(◦C h)
𝐴𝑤 2.9 m2

𝑝 0.1
𝜎1 0.1
𝜎2 0.1

4.2. The disturbance model

An important contribution of this paper is to show that disturbance
modelling is crucial for control performance. We use the advanced
dynamical disturbance model introduced in [6,10]. The disturbance
model predicts the mean value of the solar radiation, 𝜙𝑠(𝑡), and the
ambient air temperature, 𝑇𝑎(𝑡), in the time interval [𝑡𝑘, 𝑡𝑘+1[. The model
is based on stochastic differential equations and incorporates many
climate processes. Fig. 4 gives an overview of the model: It includes
models of the following components

• Cloud cover, 𝜅
• Global solar radiation (based on the direct and diffuse radiation),
𝜙𝑠

• Net radiation, 𝑅𝑛
• Ambient air temperature, 𝑇𝑎

Fig. 4 illustrates the way the components are coupled and thoroughly
explains the dynamics and interactions. Ultimately, the model predicts
the amount of solar radiation hitting a horizontal surface (in Watts)
and the ambient air temperature. That is, given an observation of the
disturbances at time 𝑡𝑘, 𝒚̂𝑑,𝑘, the disturbance model returns a sequence
of disturbance forecasts
{

𝒅̂𝑘+𝑖|𝑘
}𝑁−1
𝑖=0 (32)

where 𝒅̂𝑘+𝑖|𝑘 =
[

𝑇𝑎,𝑘+𝑖|𝑘, 𝜙𝑠,𝑘+𝑖|𝑘
]𝑇 is the prediction of the disturbances

in the time interval
[

𝑡𝑘+𝑖, 𝑡𝑘+𝑖+1 [, 𝑖 ∈ N and 𝑁 is the prediction horizon.
The building- and disturbance systems in (31) are one-way coupled
and the observation of the building system does not contain much
additional information about the disturbance state. For this reason, we
let separate Kalman filters reconstruct each system for a given time
instance. Furthermore, we let the MPC use the weather forecasts as
input to the grey-box model for the disturbances to solve the optimal
control problem.

Fig. 5 shows a forecasting example with a prediction horizon of
four days. The disturbance model forecasts the expected value, which
visibly goes to a steady state after some time (after which the forecasts
7

corresponds to a mean value).
Remark. The presented model includes only a limited climatic pro-
cesses for predicting the ambient air temperature and global solar
radiation. If relevant for the control objective, other variables could
be added to the disturbance model — e.g. humidity factor, CO2, etc.

5. Numerical case study

In this section, we carry out a simulation study to quantify the
effects of using embedded disturbance forecasts for the continuous-
time LQG controller based on the optimal control problem in (30)
using the discretised dynamics and objective function in (13) and (21),
respectively. We compare the results with a controller that uses perfect
forecasts to give an upper bound on the possible control performance.
We also compare a controller that uses offset-free control — also known
as persistent forecasts. The latter is a standard way of dealing with
disturbances in the control literature, see e.g. [40–42] for introductions
to the technique.

5.1. Simulation setup

To include weather disturbances into the simulations and mimic
natural settings, we use actual weather data as the true disturbances
acting on the building model. The controllers use weather predictions
supplied by the disturbance forecasting schemes (either persistent,
advanced, or perfect forecasts). The results in this section (simulation
results in Figs. 7 and 8) are based on 7 months of weather data, where
observations are separated by 1 h. The data was collected from a
weather station located in Taastrup in Denmark in the period from 1971
to 1973. The data include the following variables:

• Cloud cover ([okta])
• Direct radiation ([W/m2])
• Diffuse radiation ([W/m2])
• Net radiation ([W//m2])
• Air temperature ([◦C])

For more details on the data, it is thoroughly described in [43].
The controllers use a prediction horizon of 84 h and a time sample of

1 h. The constraints on the input are 𝑢min = 0 W, 𝑢max = 1500 W, 𝛥𝑢min =
−500 W, and 𝛥𝑢max = 500 W. The electricity price is parameterised as
𝑖 = 𝑐𝑢𝑐𝑖, where 𝑐𝑖 is electricity price data taken from Nordpool and 𝑐𝑢

is a constant scalar to weight the electricity price in the optimisation.
To give a visual example of the control solution and better under-

stand the differences of the strategies, Fig. 6 shows the first two weeks
of the 7 months of the control simulation. The overall behavioural
pattern seems to be more or less the same for all controllers. They
tend to buy electricity at the same times. However, the controller
using persistent forecasts seems to consistently overheat in periods with
significant amounts of sun, compared to the other controllers. Here, the
controllers using advanced and perfect forecasts seem to supply more

equal control solutions.
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Fig. 6. A simulation of a 14 day period with electricity prices taken from Nordpool and weights 𝑐𝑢 = 2.5 ⋅ 10−5, 𝑟𝑢 = 1 ⋅ 10−6.
Fig. 7. Pareto fronts of the variation trade-off of the input and the set-point deviation
7(a) and the set-point deviation and the electricity price 7(b).
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Fig. 8. The savings in terms of the objective of the controllers using advanced- and
perfect forecasts compared to a controller using persistent forecasts. The solid and
dashed lines use 𝑟𝑢 = 0 and 𝑟𝑢 = 0.5 ⋅ 10−5, respectively. E.g. The dashed lines at the
weight 𝑐𝑢 = 0.0002 shows that the advanced- and persistent forecasts performs around
10% better compared to the persistent forecasts for 𝑟𝑢 = 𝑟𝑢 = 0.5 ⋅ 10−5.

5.2. Comparison of performances between forecasting schemes

Fig. 7 shows the pareto-fronts displaying the trade-offs between
variance in the signals and economic costs. Fig. 7(a) shows the trade-
off between the variance of the solution and the control signal: If
we require less variance of the process around the reference signal,
the variance of the input increases and vice versa. This trade-off is a
consequence of the LQG control that weights the variance of solution
and the input. The controller using advanced forecasts is able to obtain
smaller variation of the solution for a given tolerable input variation
compared to persistent forecasts.

Fig. 7(b) shows the trade-off between the variance in the solution
and the economic costs. It shows again that it is more expensive
to require less variation in the solution. Again, the controller using
advanced forecasts is able to obtain a certain variation in the solution
for a smaller economic cost.

Overall, the advanced forecasts are able to deliver better solutions
in terms of economic costs and variations in the input and solution. The
performance is sometimes close to that of using perfect forecasts.

Lastly, Fig. 8 shows the savings of controllers using perfect and ad-
vanced forecasts as a function of the economic price weight compared

to a controller using persistent forecasts. The objective function savings
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c
c

are the realised savings:

Savings = 100 ⋅
𝜙(method)

𝜙(persistent)
, method ∈ {perfect, advanced} (33)

where 𝜙(method) is the realised objective computed by evaluating the
ontrol solution (using either perfect- or advanced forecasts as fore-
asting scheme) in the objective function and 𝜙(persistent) is the control

solution using persistent forecasts evaluated in the objective function.
It shows the savings for two values of 𝑟𝑢 (solid and dashed lines)
where the results vary from 5% to 26% savings by varying 𝑐𝑢 when
using advanced forecasts (compared to a controller using persistent
forecasts). By including the electricity price in the objective function
(with varying electricity price) adds the objective of also using the
electricity when it is cheaper. The results thus also give an idea of
the strategies’ abilities to shift the heat input to beneficial times. This
result is in-line with the message from the pareto-fronts — the advanced
forecasts supply better forecasts for control compared to persistent
forecasts, and for certain choices of parameters the performance is
close to that of perfect forecasts. It is also visible that adding more
regularisation to the optimal control problem (by increasing the weight
𝑐𝑢) the performance between the methods gets smaller.

6. Conclusion

This paper introduced and treated in detail the continuous-time
linear quadratic Gaussian (LQG) optimal control problem where distur-
bances are supplied by an embedded disturbance model. We derived
a zero-order hold discretisation of the continuous-time dynamics and
treated the effects of the disturbances in depth. Next, we introduced
the LQG control framework consisting of a filter and an optimal control
problem and presented an algorithm to solve the problem. We carried
out a numerical case study that involved controlling the indoor climate
of a building using the proposed LQG control framework with an em-
bedded disturbance model to supply weather forecasts. We compared
the control performance to controllers using persistent forecasts (which
is the otherwise dominating standard to supply forecasts). Results
suggest control performance improvements up to 26% are available
from using an embedded disturbance model. We also showed that the
LQG control framework leads to a useful trade-off between variation of
the input, variation of the output, and economic costs.
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