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A B S T R A C T

This paper proposes non-linear autoregressive models with exogenous inputs to model the air temperature in
each room of a Danish school building connected to the local district heating network. To obtain satisfactory
models, the authors find it necessary to estimate the solar radiation effect as a function of the time of the day
using a B-spline basis expansion. Furthermore, this paper proposes a method for estimating the valve position
of the radiator thermostats in each room using modified Hermite polynomials to ensure monotonicity of the
estimated curve. The non-linearities require a modification in the estimation procedure: Some parameters
are estimated in an outer optimisation, while the usual regression parameters are estimated in an inner
optimisation. The models are able to simulate the temperature 24 h ahead with a root-mean-square-error
of the predictions between 0.25 ◦C and 0.6 ◦C. The models seem to capture the solar radiation gain in a
way aligned with expectations. The estimated thermostatic valve functions also seem to capture the important
variations of the individual room heat inputs.
1. Introduction

In Denmark, more than 65% of households are heated by district
heating [1]. It is standard practice to measure the heat consumption
for an individual household — to be able to bill each household for
its consumption. But for an individual room in a (large) building, the
heat each radiator emits is not known. Hence, room control relies only
on temperature measurements. It is an interesting and relevant task to
control a single room. Firstly, because rooms have different dynamics
due to differences in size and heating capacity and thus require differ-
ent treatment and control in order to keep them comfortably regulated.
Secondly, because occupants perceive the indoor climate individually
and therefore want individual settings in the rooms they use [2]. For
these reasons, it is desirable to control buildings on room level.

1.1. Literature review

Predictive room-level control obviously requires temperature-mod-
els of the individual rooms. However, the popular Resistor–Capacitor-
based models [3] are not possible to employ due to the missing knowl-
edge of the heat load on room-level. We are left, then, to use models
that relate less to physics. AutoRegressive with eXogenous input (ARX)
models are a popular class of models for time series modelling [4,5].
ARX models are a variant of AutoRegressive and Moving Average
(ARMA) models where the MA-part is left out and input-terms are
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added [6]. Examples of applications are solar radiation forecasting [7],
wind power forecasting [8], and glucose level predictions [9]. For
thermal prediction of buildings, popular black-box models include ARX
and neural network models. The latter has received much attention
recently [10–16]. Standard Artificial Neural Networks (ANNs) are the
simplest kind of neural network model and Root Mean Square Error
(RMSE) between 0.77 and 0.9 are reported [10,11]. Long short-term
memory models, that are suitable neural networks for time series
predictions, are also studied intensively with various variations (e.g. in
combination with an error correction model or a convolutional neural
network) [13,14]. A combination of grey-box models with a neural
network to make correct prediction errors have also been done [12].
RMSE between 0.6 and 0.75 was reported. Conclusions regarding the
best kind of model is not unanimous, with some studies finding ARX
models performing [15] better and vice versa [16]. ARX models are in
general much simpler compared to neural networks making them more
robust toward overfitting and faster to fit [17,18]. Given time series
data of the system, the optimal set of parameters in linear ARX models
has a closed-form solution, equivalent to linear regression, which is fast
and robust to compute [6]. Sometimes, however, non-linear models
are necessary to sufficiently describe input effects due to their richer
solution structures compared to linear models [19].
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Neural network models can be thought of as (very high-dimensional)
non-linear variants of linear ARX models readily able to model non-
linearities. The present approach, however, use the low-dimensional
ARX models while including and isolating the non-linear contributions
in the model. The heat dynamics between the indoor and outdoor air
are well known to be linear [20,21], and therefore there is no need to
use non-linear models to capture this effect. However, the solar gain
can be very non-linear [22,23]. The proposed method isolates the non-
linearities to the solar gain using relatively few parameters compared
to neural network models. Thus, the presented approach keeps the
robustness and simplicity of the ARX model, while still modelling
non-linear effects. The few number of parameters and simple model
structure of the proposed ARX models impose and act as regularisation
in the model, which ensures robustness of the prediction capabilities.
ARX models are also readily used for control purposes.

In the present paper, it is described how important non-linearities
that affect the room air temperature can be modelled. The gain from
solar radiation is a significant source of heat in rooms. Solar radiation
forecasts are typically given as an average effect on a horizontal surface
during a time interval, i.e. in the units [W∕m2]. However, the solar gain
in rooms vary non-linearly throughout the day and is hence a non-linear
function of time [24,25]. Another non-linearity arises from the radiator
thermostats. A thermostat controls the valve (and mass flow rate in the
radiators) as a PI-controller. However, it is well-known that the map
from a measured temperature and set point to a valve state is a non-
linear function [26,27]. Even chaos in the valve dynamics has been
reported [28]. To model the entering non-linearities from the solar gain
and the thermostatic valve, functions are fitted to data using B-splines
and Hermite polynomials as basis functions.

1.2. Main contributions of the paper

This paper describes a method for estimating ARX-models where
the estimation problem is non-linear in the parameters. Conventional
methods cannot estimate parameters in such models, thus, the proposed
method generalises the identification procedure for ARX models. Ap-
plying the method for indoor air temperature models enables us to
estimate nonlinear effects such as varying solar radiation gain and heat
inlet from the heating system in each room. The room air tempera-
ture models are able to predict the temperature over a long period
with different conditions and may enable smart predictive control on
room level. Results indicate that the models perform on par or better
compared to the literature in terms of RMSE.

1.3. Structure and outline of the paper

Section 2 introduces the building and experimental setup carried
out to obtain the data. In Section 3, ARX models are introduced and
how to carry out the variable transformation and parameter estimation.
Next, Section 4 introduces B-splines and Hermite polynomials for data
fitting and explains how to use them for modelling inputs in the ARX
models. Section 5 showcases the results from fitting ARX models to the
individual room air temperatures of a Danish school building. Lastly,
Section 6 concludes and sums up the findings of the paper.

2. Case study: A Danish school building

This section presents the building and the experimental setup. Also,
it introduces and explains the problems related to operating the indoor
climate of the individual rooms and sets the stage for the rest of the
paper. It is identified how the following key heat gains of the room air
temperature to include in the models:

• The outdoor air temperature constantly affects the indoor air
temperature through walls and windows. The outer surfaces act as
a low-pass filter between the indoor and outdoor air temperature.
2

Fig. 1. A photograph of the building site.

Fig. 2. Floor plan of the school building.

• The solar gain may deliver significant amounts of energy to the
indoor air in short time periods by entering through windows and
heating floors, walls, furniture and other materials.

• The room radiators are the rooms’ main heating sources and are
controlled by a thermostatic valve that opens according to a given
set-point.

2.1. The building and rooms

The building, a school with three floors and a basement, is located
in Høje Taastrup, Denmark. The uppermost floor is a partly-refurbished
roof attic. A photo of the building is given in Fig. 1. Fig. 2 shows a
floor plan of the building. It has 10 classrooms while fewer rooms are
hallways, storage rooms, toilets, and teacher’s rooms. The following
paragraph gives an overview of the basic properties of the building
here. For more technical details, the reader is referred to Bruun [29],
Lex et al. [30].

The building was built in 1929 and thus is not insulated according to
modern standards. The facade and internal walls consist of solid bricks.
The windows have wooden frames and double-paned low-E glazings.
Floors are made from wood joists and the roof is partly uninsulated and
partly insulated slate roof. The building is connected to the local district
heating (DH) system. The building uses district heating for domestic hot
water and space heating. For this building, the space heating is a sep-
arate water-based circuit with dedicated pumps. Radiators of different
types (cast-iron, panel convectors, plane conductors) with individual
thermostats deliver the heat in the individual rooms. Each radiator has
an individual thermostatic valve that automatically and individually
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regulates the water flow into the radiator unit to maintain a certain air
temperature, and can be remotely controlled by temperature set-points.
To measure the room air temperature, each room is equipped with an
air temperature sensor, placed somewhere on the inner wall in around
2–3 m height.

2.2. Some room modelling problems

Since radiators do not heat up the room in a spacial uniform man-
ner, the measured room air temperature is only representative for the
air close to the sensor. There is thus a temperature difference between
the air temperature close to the thermostat and measured temperature
by the sensor on the wall. Thus, the measured room temperature may
react very differently to set-point increases based on room geometry,
room size, air circulation, number and placement of radiators and
thermostats etc. Such factors support the need for individual room
air temperature models. Due to the many complicated physical factors
related to modelling the thermostatic behaviour, a data-driven method
is proposed using interpolating polynomials to describe the state of the
radiator valves as a function of the room air temperature and the room
set-point.

Another significant challenge on room level arises from the solar
gain. The sun radiates large amounts of energy to rooms in buildings,
which leads to a fast increase in the indoor air temperature [31].
It is thus important to model the solar gain in thermal models of
buildings [32]. The solar gain pattern is individual for each room due to
the individual room and window sizes and different navigational orien-
tations of the windows. Furthermore, the solar gain changes throughout
the day as the sun traverses the sky (due to Earth’s rotation around
itself), which is difficult to describe using regular ARX models. To
describe the time-varying solar gain in each room, this paper propose
a data-driven approach using B-splines as a basis expansion [33].

2.3. The experiment and data

Each room has been equipped with a sensor, which measures the
indoor air temperature. The accuracy of the measurements are ±0.2 ◦C
and are taken in resolution of 0.1 ◦C. All radiators in the rooms are
also equipped with smart thermostats, where the operators can read
and write set-points in ◦C. Sensors located in buildings central heating
system measure the total heat load of the building and the forward
temperature. See Table 1 for an overivew of the experimental data.

The experiment was designed to produce dynamical responses from
the rooms to easier learn the thermal dynamics. The experiment lasted
from the 1st of March, 2021, through the 27th of March 27, 2021,
during which the school was only partly occupied (due to covid-19) but
most rooms were used. During the experiment, individual and indepen-
dent set-points were sent to each room. However, different schedules
were used during day- and night time, such that the temperature was
more comfortable during occupation times. The measured signals for
each room are: the indoor air temperature, 𝑇i,𝑡, and the thermostatic
set-point, 𝑇set,𝑡. The forward temperature of the space heating water
in the building was set constant at 60 ◦C. The ventilation system was
operating at a constant rate with inlet temperature set-point between
20 and 24 ◦C. The weather data is from a local weather station and is
provided by the Danish Meteorological Institute.

3. ARX-models for dynamical systems

This section introduces ARX models for modelling dynamical sys-
tems. In linear ARX models, the optimal parameters are given by
a closed-form solution to a linear regression problem. However, the
closed-form solution exists only for models that are linear in the pa-
rameters. This section addresses this problem and proposes a method
3

for estimating parameters that appear non-linearly in ARX models.
Table 1
Data interpretation.

Name Quantity Unit

𝑇 𝑗
i,𝑡 Indoor air temperature in room 𝑗 [◦C]

𝑇 for
𝑡 Building supply temperature [◦C]

𝑇 set
𝑗,𝑡 Temperature set-point in room 𝑗 [◦C]

𝐼𝑡 Global solar radiation [W/m2]
𝑇 a
𝑡 Outdoor air temperature [◦C]

3.1. Introduction to ARX models

Let {𝑌𝑡; 𝑡 ∈ N}, 𝑌𝑡 ∈ Y ⊆ R, be a stochastic process and let the
time series 𝒚𝑁 =

(

𝑦1, 𝑦2,… , 𝑦𝑁
)⊤ be a realisation of 𝑁 consecutive

observations of 𝑌𝑡. Let 𝑿𝑁 =
{

𝒙𝑖
}𝑁
𝑖=1, 𝒙𝑡 = (𝑥1,𝑡,… , 𝑥𝑁𝑥 ,𝑡)

⊤ ∈ X𝑁𝑥 ⊆ R𝑁𝑥

be a vector time series containing the inputs to the system associated
with the realisation. An ARX model of order 𝑀 has the form

𝜑(B)𝑌𝑡 = 𝜷(B)⊤𝒙𝑡 + 𝜀𝑡 , (1)

where 𝜑(B) = 1 + 𝜑1B + 𝜑2B2 + ⋯ + 𝜑𝑀B𝑀 is a polynomial in the
back shift operator B, B𝑘𝑌𝑡 = 𝑌𝑡−𝑘. 𝜷(B)⊤ = (𝛽1(B), 𝛽2(B),… , 𝛽𝑁𝑥

(B)) is
a vector with back-shift polynomials where the 𝑖’th polynomial

𝛽𝑖(B) = 𝛽𝑖,1B + 𝛽𝑖,2B2 +⋯ + 𝛽𝑖,𝑀B𝑀 , 𝑖 = 1,… , 𝑁𝑥 (2)

is associated with the 𝑖’th input. {𝜀𝑡; 𝑡 ∈ N} is a white noise process
where 𝜀𝑡 ∼ 𝑁(0, 𝜎2) is i.i.d. Now, let 𝜷𝑖 = {𝛽𝑖,𝑚}𝑀𝑚=1 be the set of
oefficients in the 𝑖’th back-shift polynomial. Then {𝜑𝑖}𝑀𝑖=1 and {𝜷 𝑖}

𝑁𝑥
𝑖=1

are regression coefficients in the ARX model in (1). Isolating 𝑌𝑡,

𝑌𝑡 =
𝑀
∑

𝑚=1
−𝜑𝑚B𝑚𝑌𝑡 +

𝑁𝑥
∑

𝑖=1
𝛽𝑖(B)𝑥𝑖,𝑡 + 𝜀𝑡 (3)

we obtain the system on a regression form. Then the optimal set of
parameters in Eq. (3) when minimising the sum of squared errors is
given by the closed form solution [6]

({�̂�𝑖}𝑀𝑖=1, {�̂�𝑖}
𝑁𝑥
𝑖=1) = arg min

𝜑1 ,…,𝜑𝑀 ,𝜷1 ,…,𝜷𝑁𝑥

𝑁
∑

𝑖=1
𝜀2𝑖 =

(𝑿(𝒚𝑁 ,𝑿𝑁 )⊤𝑿(𝒚𝑁 ,𝑿𝑁 ))−1(𝑿(𝒚𝑁 ,𝑿𝑁 )⊤𝒚𝑁 ) ,

(4)

here 𝑿 ∶ Y𝑁 ×X𝑁×𝑁𝑥 ↦ R𝑁×𝑀(𝑁𝑥+1) is the so-called design matrix of
Eq. (1), where each row constitute a time instance of Eq. (3).

3.2. Parameter estimation in ARX models

The overall goal of the parameter estimation procedure is to find
the set of parameters that minimises the sum of squared residuals (as
in Eq. (4)),
𝑁
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 =

𝑁
∑

𝑖=1
�̂�2𝑖 . (5)

Therefore, the central objective in order to enable us to minimise (5)
is to evaluate the squared residuals. Then, a numerical optimisation
routine may minimise the squared residuals w.r.t. the model param-
eters. Since our ARX model includes parameters that are non-linearly
coupled (e.g. some regression coefficients may depend non-linearly on
some parameters 𝜽tr , i.e. 𝛽𝑖,𝑚(𝜽tr )), the closed-form solution (4) cannot
e evaluated directly. Instead, to evaluate the sum of squared residuals
5), the paper propose the following two-stage procedure:

• Transformation stage: Here, transform the regressors such that
they appear linearly in the ARX model (given the set of trans-
formation variables).

• Regression stage: Here, insert the transformed regressors into the
regression form in (3) to compute the regression coefficients using
(4), which afterwards allows us to evaluate the sum of squared

residuals.
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Performing the two above steps returns the sum of squared residuals,
which may be minimised by a numerical optimisation routine to find
the optimal set of parameters. This reduces the size of the numerical
optimisation to a subset of the model parameters compared to letting
all parameters be optimised by numerical means.

3.2.1. Step one: Transformation stage
The regular ARX-model in (1) is linear in the regressor coefficients

and does not directly allow terms that are non-linear in the parameters.
In order to include non-linear terms in the ARX model, the input
variables are transformed using a desired non-linear transformation
eeded in the model. Let 𝑼 𝑡 = (𝒖1,𝑡,… , 𝒖𝑁𝑥 ,𝑡)

⊤ ∈ U𝑁×𝑁𝑥 be the ’’raw’’
input to the model, e.g. horizontal global solar radiation. Then, define
the transformed input variables by

𝑥𝑖,𝑡 = ℎ𝑖(𝑢𝑖,𝑡, 𝑦𝑡, 𝑡,𝜽tr ) , 𝑖 = 1,… , 𝑁𝑥 , (6)

where 𝜽tr ∈ Ptr ⊆ R𝑁tr are input-specific parameters that may enter
into e.g. a basis expansion such as a spline basis, a polynomial basis, a
Fourier basis etc., ℎ𝑖 ∶ U × Y × R+ × Ptr ↦ X𝑖 ⊆ R is the (in general)
non-linear transformation for the 𝑖’th input. Note that the variable 𝑥𝑖,𝑡
defines a new regressor as a function of the input 𝑢𝑖,𝑡. But now, a regular
ARX model, which is linear in the new regressors, 𝑥𝑖,𝑡, can be written

𝜑(B)𝑌𝑡 = 𝜷(B)⊤𝒙𝑡 + 𝜀𝑡 ,

⟹ 𝑌𝑡 =
𝑀
∑

𝑚=1
−𝜑𝑚B𝑚𝑌𝑡 +

𝑁𝑥
∑

𝑖=1
𝛽𝑖(B)𝑥𝑖,𝑡 + 𝜀𝑡 ,

⟹ 𝑌𝑡 =
𝑀
∑

𝑚=1
−𝜑𝑚B𝑚𝑌𝑡 +

𝑁𝑥
∑

𝑖=1

𝑀
∑

𝑚=1
𝛽𝑖,𝑚B𝑚𝑥𝑖,𝑡 + 𝜀𝑡 .

(7)

where 𝒙𝑡 = (𝑥1,𝑡,… , 𝑥𝑁𝑥 ,𝑡)
⊤. Note that if ℎ𝑖 does not depend on any

parameters, i.e. if 𝜽tr = ∅, the model simplifies to a regular ARX model
that is linear in the regression coefficients.

3.2.2. Step two: Parameter estimation in the transformed regression vari-
ables

If one writes (7) for all observations, 𝑦𝑡, it may be write on the
following matrix–vector form

𝒀 𝑁 = 𝑿(𝜽tr ;𝑿𝑁 , 𝒚𝑁 )𝜽reg + 𝜺𝑁 , (8)

where 𝑿 ∶ Ptr×X𝑁×𝑁𝑥 ×Y𝑁 ↦ X𝑁×𝑀(𝑁𝑥+1)
𝑚 , 𝑿𝑁 = (𝒙1,𝒙2,… ,𝒙𝑁 )⊤, is a

function that returns the design matrix of the linear regression problem
in (7) as a function of 𝜽tr . Eq. (8) is now linear in the coefficients
{𝜑𝑚}𝑀𝑚=1 and {𝜷𝑖}

𝑁𝑥
𝑖=1. It can then be interpreted as a linear regression

problem with 𝜽reg = (−𝜑1,… ,−𝜑𝑀 , 𝛽1,1,… , 𝛽𝑁𝑥 ,𝑀 )⊤ ∈ Preg ⊆ R𝑀(𝑁𝑥+1)

as the regression coefficients and 𝑦𝑖 and 𝒙𝑖 as regressors.
Eq. (8) appears as a linear regression problem w.r.t. 𝜽reg. It is

immediately evident that the design matrix depends on 𝜽tr . There-
fore, consider the case where 𝜽tr is given and fixed, then the optimal
estimator of 𝜽reg when minimising the sum of squared residuals in (4) is

�̂�reg(𝜽tr ) =
(

𝑿(𝜽tr )⊤𝑿(𝜽tr )
)−1 (𝑿(𝜽tr )⊤𝒀

)

(9)

where 𝑿(𝜽tr ) = 𝑿(𝜽tr ;𝑿𝑁 , 𝒚𝑁 ) is simply a short-hand notation.

3.2.3. Optimisation of transformation parameters
The above implies that for each given value of 𝜽tr , the optimal

set of 𝜽reg is given in a closed form. With 𝜽tr and 𝜽reg at hand, the
sum of squared residuals can be evaluated. Thus, one can write a
function alone in 𝜽tr , which 1) transforms the regressors, 2) solves the
arising linear regression problem, and 3) evaluates the sum of squared
residuals. The optimisation problem in the transformation variables
become:

�̂�tr = arg min
𝑁
∑

�̂�(𝜽tr )2𝑖 (10)
4

𝜽tr 𝑖=1
b

where 𝜀(𝜽tr )𝑖 is the 𝑖’th prediction error as a function of 𝜽tr . Any
numerical optimiser may be used to solve this problem. Practically, is
done by defining a function that takes as input 𝜽tr , computes 𝜽reg, and
in turn computes and returns the sum of squared errors. Algorithm 1
outlines the framework for evaluating (5). The function is fed into a
numerical optimiser. The ipopt solver through Python was used.

Algorithm 1 Evaluation of sum of squared residuals
require: 𝜽tr , 𝒚𝑁 , 𝑼𝑁

given 𝜽tr , 𝒚𝑁 , and 𝑼𝑁 , compute transformed input variables, 𝑥𝑖,𝑡, and
construct design matrix 𝑿 = 𝑿(𝜽tr ,𝑿𝑁 , 𝒚𝑁 )

compute regression variables �̂�reg = (𝑿⊤𝑿)−1(𝑿⊤𝒚𝑁 )

compute sum of squared residuals, SSE =
∑

𝑖 𝜀
2
𝑖 = (𝒚𝑁 −𝑿�̂�reg)⊤(𝒚𝑁 −

𝑿�̂�reg)

return SSE

4. Curve estimation and interpolation using B-splines and Hermite
polynomials

This section introduces the modelling techniques applied for mod-
elling non-linear effects to expand inputs and parameters into basis
functions. Curve fitting using splines or polynomials is usually a prob-
lem of estimating coefficients to basis functions. The basis functions
typically form a linear function space. The goal of the estimation is
to find the element from this space, 𝒙, that minimises some distance
between 𝒙 and the data points. This section shows how to model the
solar radiation and the thermostatic valve function using B-splines and
Hermite-polynomials expansion basis functions, respectively [34].

4.1. de Boor B-splines

Due to the properties of B-splines, they have proved useful in many
data fitting applications [35–37]. de Boor B-splines [38] are defined
on a finite interval [𝑎, 𝑏] ⊆ R by a recursion formula via a set of
control points 𝛥 ∶ 𝑎 = 𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑁𝑐

= 𝑏 and a polynomial
degree 𝑘. This uniquely defines a set of non-decreasing knot placements
𝑎 = 𝑧0 ≤ 𝑧1 ≤ ⋯ ≤ 𝑧𝑁𝑐+𝑘+1 = 𝑏, where the 𝑖’th B-spline of order 𝑘 is
iven by

𝑖,𝑘 =
𝑧 − 𝑧𝑖

𝑧𝑖+𝑘 − 𝑧𝑖
𝐵𝑖,𝑘−1 +

𝑧𝑖+𝑘+1 − 𝑧
𝑧𝑖+𝑘+1 − 𝑧𝑖+1

𝐵𝑖+1,𝑘−1 , (11)

where 𝐵𝑖,0(𝑧) = 𝜒[𝑧𝑖 ,𝑧𝑖+1[(𝑧). Fig. 3(a) shows a set of six fourth order
e Boor B-splines with equidistant control points 𝛥 = (0, 1, 2, 3) on the
omain [0, 3]. The estimation problem then comes down to estimating
he scaling coefficients in a linear combination of basis B-splines to
orm the estimated function.

.1.1. Estimation of B-spline knot placements
In addition to the scaling coefficients, it is possible to optimise over

he placements of the control points. One strategy to place the control
oints is to put them according to the quantiles of the data. This way,
he control points are put according to the amount of data in the state
pace. This strategy, however, does not account for the amount of
urvature of the true function. By freely optimising the control point
lacements, splines are able to ’’move closer’’ in parts of their domain
here more fluctuating and fast-changing dynamics occur. Define the
arameters 𝝉 = {𝜏𝑘}

𝑁𝑐−2
𝑘=0 as the distances between interior knots 𝑡𝑖 and

𝑖+1 for 𝑘 = 0,… , 𝑁𝑐 − 2 (minus two comes from the last distance
eing uniquely given by the first 𝑁𝑐 − 1 distances). Fig. 3(b) shows
he de Boor B-splines as in Fig. 3(a), where now the control points are
= (0, 1∕2, 1, 3). By moving the two central knots to the left in the

omain, the ’’density’’ of the spline variation has also moved. This can

e useful to capture large curvatures of the data.
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Fig. 3. de Boor’s B-splines with uniform and non-uniform knot placements.

.2. Estimation of the solar gain using B-splines

The solar radiation is very fluctuating and is governed by seasonal,
iurnal, and hourly variations [39]. It becomes even more complex
hen estimating the solar gain of a single room of a building since

t depends much on the size and orientation of the window(s) of the
oom. It is very common to estimate models with a constant solar gain
arameter e.g. on the form

1(B)𝐼𝑡 = 𝛽1,1𝐼𝑡−1 + 𝛽1,2𝐼𝑡−2 +⋯ + 𝛽1,𝑀𝐼𝑡−𝑀 , (12)

here 𝐼𝑡 is the global solar radiation (typically given by a third party
ource) at time 𝑡 and {𝛽1,𝑚}𝑀𝑚=1 are time-independent parameters. As
n example, imagine a room with a single window pointing toward
ast. In that case, solar radiation enters the room in the morning and
isappears as the sun travels around south on the sky. The above
odel formulation (12) is not able to catch such variable gains. Instead,

ne can expand the coefficients in (12) in a basis formed by a linear
ombination of B-splines and define a transformed input variable by
he expansion

𝐼,𝑡 = ℎ𝐼 (𝐼𝑡, 𝑡,𝜶, 𝝉) = (𝛼1𝐵𝝉
1 (𝑡) + 𝛼2𝐵

𝝉
2 (𝑡) +⋯ + 𝛼𝑁𝑐+𝑘𝐵

𝝉
𝑁𝑐+𝑘

(𝑡))𝐼𝑡 , (13)

where 𝐵𝝉
𝑛 (𝑡) is the 𝑛’th B-spline basis function evaluated at time 𝑡 with

iven knot displacements 𝝉. 𝜶 = {𝛼𝑖}
𝑁𝑐+𝑘
𝑖=1 is the associated basis spline

coefficients. Here, 𝑁𝑐 is a tuning paratemeter set by the user. The model
in (12) can thus be expanded to

𝛽1(B)𝑥𝐼,𝑡 =
𝑀
∑

𝛽1,𝑚ℎ𝐼 (𝐼𝑡−𝑚, 𝑡 − 𝑚,𝜶, 𝝉) . (14)
5

𝑚=1
Fig. 4. The Hermite basis functions as given in Fritsch and Carlson [40] on the interval
[𝑎, 𝑏] = [0, 1].

Given 𝜶 and 𝝉, Eq. (14) is linear in the transformed regressors. Thus,
𝜶 and 𝝉 belong to the parameters related to the transformed regressors
𝜽tr , and {𝛽1,𝑚}𝑀𝑚=1 are the regression coefficients.

4.3. Estimation of the thermostatic control function using Hermite polyno-
mials

Thilker et al. [41] propose the following function to describe the
valve state of a radiator as a function of the measured room tempera-
ture and the thermostat set-point 𝑇 set

𝑡 ,

𝑓 valve
𝑡 = 1

1 + exp
(

−𝛼(𝑇 set
𝑡 + 𝑇offset − 𝑇 i

𝑡 )
) . (15)

his simple model is characterised by two parameters (𝛼, 𝑇offset) ∈
0,∞[×R and has a relatively fixed shape that mimics the intuitive
ehaviour of thermostats: It acts as a PI-controller, which opens when it
s too cold and closes when it is too warm (in a continuous way). The
dvantage of the model in Eq. (15) is its simplicity and few number
f parameters. The disadvantage, however, is that the function’s shape
ight be too restrictive to capture the actual room-specific behaviour.
he thermostatic behaviour depends on many parameters such as room
ize, number of radiators, radiator placements etc. To simplify the com-
licated thermostatic modelling while keeping the function reasonably
onstrained, it is proposed to use a Hermite polynomial basis to fit a
urve to the valve states as a function of indoor air temperature and
he set-point.

In these settings, the estimation problem of the thermostatic valve
unction comes down to estimating coefficients in a basis expansion.
ut monotonicity in the solution is also required since it is natural to
hink that the valve opens monotonically as the relative temperature
ifference increases.

.3.1. Cubic interpolation with Hermite polynomials
Let the following be given: an interval [𝑎, 𝑏] ⊂ R, function values at

he end points (𝑎, 𝑓 (𝑎)) and (𝑏, 𝑓 (𝑏)), and derivatives at the end points
′(𝑎) and 𝑓 ′(𝑏). Consider then the problem of finding a polynomial, 𝑃 ,
f degree three with 𝑃 (𝑎) = 𝑓 (𝑎), 𝑃 ′(𝑎) = 𝑓 ′(𝑎), 𝑃 (𝑏) = 𝑓 (𝑏), 𝑃 ′(𝑏) =
′(𝑏). A solution to this problem has the form [42]

(𝑥) = 𝑓 (𝑎)𝐻1(𝑥) + 𝑓 (𝑏)𝐻2(𝑥) + 𝑓 ′(𝑎)𝐻3(𝑥) + 𝑓 ′(𝑏)𝐻4(𝑥) , (16)

here 𝐻𝑖 are the usual cubic Hermite basis functions (given in e.g.
ritsch and Carlson [40]; see Fig. 4).

Consider now the partition 𝛥 ∶ 𝑎 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁𝑣
= 𝑏 over

he interval [𝑎, 𝑏] with associated function values and derivatives for
ll partition points. This forms an interpolating polynomial between
ach sub-interval [𝑥𝑖, 𝑥𝑖+1] by using the solution in (16). If one further
onstrain the function values {𝑓 }𝑁𝑣 to be monotonic increasing, 0 ≤
𝑘 𝑘=1
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Fig. 5. An illustration of the expanded basis formed by piece-wise Hermite interpo-
ations of the valve state function. Each interval of length 𝓁𝑖, 𝑖 = 1,… , 𝑁𝑣, consists
f cubic Hermite polynomials that interpolates the interval between function values.
he Hermite polynomials have been modified to be monotonic between the function
alues, which makes the overall function monotonic due to the constraint 𝑓𝑖 ≤ 𝑓𝑖+1.

1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑁𝑣
≤ 1, a monotonic interpolation over the

ntire interval [𝑎, 𝑏] is guaranteed. [40] describes an algorithm for
omputing interpolating polynomials that are monotonic in each sub-
nterval. However, data is usually given simply by (𝑥𝑖, 𝑓 (𝑥𝑖)), thus a
rocedure to compute the derivatives at each partition point is also
eeded. Algorithms for this also exists, see e.g. [40]. We can now
ptimise over the partition placements and the associated function
alues to estimate a monotonic increasing curve given by

̂ (𝑥) =𝑓𝑖𝐻1(𝑥) + 𝑓𝑖+1𝐻2(𝑥) + 𝑓 ′
𝑖𝐻3(𝑥) + 𝑓 ′

𝑖+1𝐻4(𝑥) ,

𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1[ .
(17)

To perform the piece-wise cubic interpolation, i.e. compute 𝑃 in
(17), the authors use PchipInterpolator from the SciPy li-
brary in Python. To optimise over the partition points, the lengths
of the sub-intervals by 𝓁𝑖 = 𝑥𝑖+1 − 𝑥𝑖 are defined as parameters.
Fig. 5 depicts and illustrates the ideas of this estimation scheme. The
parameters related to estimate the thermostatic valve function are
(𝓁1,… ,𝓁𝑁𝑣−2, 𝑓2,… , 𝑓𝑁𝑣−1) since the end points are fixed to 𝑓1 = 1
nd 𝑓𝑁𝑣−1 = 0. The transformed regressors are

valve,𝑡 = ℎvalve(𝑇set,𝑡, 𝑦𝑡,𝓵,𝒇 ) = 𝑃𝓵,𝒇 (𝑦𝑡 − 𝑇set,𝑡)(𝑇for − 𝑦𝑡) , (18)

where 𝑃𝓵,𝒇 is given by (17), and the subscripts indicates the poly-
nomial’s dependence on the parameters. The term (𝑇for − 𝑦𝑡) is the
temperature difference between the supply (forward) water in the
heating system of the building and the room air temperature. This term
is then multiplied by ’’how open the valve in the radiator is’’. The
regression model related to the heat input becomes

𝛽2(B)𝑥valve,𝑡 =
𝑀
∑

𝑚=1
𝛽2,𝑚ℎvalve(𝑇set,𝑡−𝑚, 𝑦𝑡−𝑚,𝓵,𝒇 ) . (19)

Again, given 𝓵 and 𝒇 , Eq. (19) is linear in the transformed regressors. 𝓵
and 𝒇 then belongs to 𝜽tr and {𝛽2,𝑚}𝑀𝑚=1 are the regression coefficients.

5. Modelling results

This section presents and discusses the modelling results and quan-
tifies their performance.
6

r

Fig. 6. The RMSE of the temperature predictions as a function of the prediction horizon
for the rooms. Most rooms reaches a point where the RMSE becomes rather flat after
6–8 h. The performance of the individual model varies a bit: a cluster of rooms whose
RMSE is significantly higher compared to the rest that constitute its own cluster.

5.1. The final non-linear ARX model

Based on the previous section, the following ARX model describes
the indoor air temperature, denoted 𝑦𝑡, based on inputs from the
outdoor air temperature, solar radiation, and radiators

𝜑(B)𝑌𝑡 =𝛽1(B)𝑥𝐼,𝑡 + 𝛽2(B)𝑥valve,𝑡 + 𝛽3(B)(𝑇𝑎,𝑡 − 𝑌𝑡) + 𝜀𝑡 ,

⟹ 𝑌𝑡 =
𝑀
∑

𝑚=1
−𝜑𝑚B𝑚𝑦𝑡 +

𝑀
∑

𝑚=1
𝛽1,𝑚B𝑚𝑥𝐼,𝑡

+
𝑀
∑

𝑚=1
𝛽2,𝑚B𝑚𝑥valve,𝑡 +

𝑀
∑

𝑚=1
𝛽3,𝑚B𝑚(𝑇𝑎,𝑡 − 𝑌𝑡) + 𝜀𝑡 .

(20)

he models are estimated using data sampled every 30 min. The
uthors found that the order 𝑀 = 3 was optimal for almost all rooms
ased on information criterions such as AIC or BIC (one room model
as optimal for 𝑀 = 2).

.2. The estimation problem

We write up the optimisation problem as outlined in Section 3.

min
𝜽tr

𝑁
∑

𝑖=1
�̂�(𝜽tr )2𝑖 (21a)

.t. 𝜽tr =
[

𝜶⊤, 𝝉⊤,𝒇⊤,𝓵⊤]⊤ (21b)

𝑨𝜽tr ≤ 𝒃 , (21c)

here the sum in (21a) is computed by Algorithm 1. The in-equality
onstraints 𝑨𝜽tr ≤ 𝒃 specifies potential constraints that might be needed
n the parameters. For instance, the valve function values are required

o be monotonically decreasing, 𝑓𝑖 ≥ 𝑓𝑖+1 ⟹
[

−1 1
]

[

𝑓𝑖
𝑓𝑖+1

]

≤

. Small minimal distances between knot points in the B-spline and
ermite representations are also formulated as constraints. Keep in
ind that the optimisation problem is not necessarily convex and thus
numerical solver may find local optimal solutions. However, the

uthors did not find that the solution was sensitive to variations in the
nitial condition.

.3. Room air temperature model validation

Fig. 6 shows the RMSE of the individual room air models for each

oom as a function of the prediction horizon. For day-ahead predictions,
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Fig. 7. Modelling results of room C0.06.
the rooms deliver an average RMSE of around 0.4◦ C with the highest
being 0.6◦ C and the lowest being 0.25◦ C. Most rooms lie in the
range of 0.25◦ C-0.45◦ C. However, four rooms seem to form a cluster
that performs worse compared to the rest. This section investigates the
resulting models of three of the rooms. The rest is omitted due to an
otherwise large space use.

5.3.1. Room C0.06
Fig. 7 shows the results related to the model of room C0.06. To

present an example of data and a model simulation to get an intuition
of the forecasting abilities, Fig. 7(a) shows a multi-step simulation of
the model for the room. Based on the first four days, where the set-
point is constant, the model seems to catch the offset of the measured
room temperature and the thermostat set-point well. Also, the model
does a proper job at catching the exponential decay and increase, when
the set-point is lowered or raised. However, there seems to be some
more random dynamics where the model struggles; around day 10, the
temperature drops much faster than predicted and around day 15/16,
the temperature suddenly increases. These random dynamics may be
due to occupancy. Lastly, it is also worth noting that the model seems to
be ’’stable’’ in time; it does not drift away from the measured trajectory.

Fig. 7(b) displays the estimated average solar gain during a day
based on the estimated B-spline representation. The shape of the es-
timated curve is large during the morning hours and close to zero
otherwise. This indicates that the sun has no influence in the afternoon,
which is in line with the fact that the windows point toward east and
only receives sun during the morning (see Fig. 2).

The estimated thermostatic valve function is displayed in Fig. 7(c).
It suggests that the valve is almost fully open at 1◦C above the set-
point and closes fast below that point. Notice that the knots are centred
around the data and where the estimated curvature is high.

Figs. 7(d) and 7(e) show the histogram and autocorrelation of the
1-step prediction residuals. The shape of the histogram is close to
7

a Gaussian distribution, however its tails seem to be too wide. This
could be due to a non-constant variance in either time or space. To
model spacial variation in the error variance, a transformation might
be suitable to mitigate this. For time-varying variance, using e.g. a
variant of the generalised autoregressive conditional heteroskedasticity
(GARCH) model may be used [43]. The autocorrelation function shows
only a few small significant lags. These may be due to e.g. periodic
occupant behaviour or some other dynamics that are not captured
properly. However, the small magnitude of the significant lags indicates
that the model captures the dynamics well overall.

5.3.2. Room C0.08
Fig. 8 shows the results related to the model of room C0.08. Fig. 8(a)

shows a multi-step prediction of the model for the room. The dynamics
for this room have spikes in the measured temperature. Looking at
8(b), it is immediately evident, that the estimated solar gain peaks
in the afternoon. This also supports that the room windows point
toward west and sees the sun in the evening. After proving the exact
placement of the sensor in the room, it is found that the temperature
sensor is placed such that it is hit by direct solar radiation. Hence,
the measured air temperature does not fully reflect the actual room
air temperature during the evening. However, the model still does a
good job at catching these spikes. Looking at Fig. 6, C0.08 has a large
RMSE which may arise from the difficulty of predicting the spikes.
Nevertheless, the model overall seems to catch the temperature offset
well together with the exponential decays/increases.

The estimated thermostatic valve function is displayed in Fig. 8(c).
It suggests a more linear shape of the valve function compared to room
C0.06 with a small flat step around 0. This shape may correspond more
to the expected shape the valve state in an ideal thermostat [26]. Again
the control points are placed around the largest parts of the density and
where the largest estimated curvature is.
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Fig. 8. Modelling results of room C0.08.
Figs. 8(d) and 8(e) show the histogram and autocorrelation of the 1-
step prediction residuals. Again, the shape of the histogram is close to a
Gaussian distribution, but again the tails seem to widen the distribution
too much. The autocorrelation function shows essentially no significant
lags. The spikes in the temperature due to the solar radiation hitting
seems to be captured quite well, since it could have shown in the
autocorrelation if it was not the case. This implies that the model
captures the dynamics well overall.

5.3.3. Room C1.09
Fig. 9 presents the results from the model of room C1.09. Fig. 9(a)

shows a multi-step prediction for the room. Again, based on the first
four days, where the set-point is constant, the model seems to catch the
offset of the measured room temperature and the thermostat set-point
well. Also, the model does a good job at catching the exponential decay
and increase, when the set-point is lowered or raised. C1.09 seems to
be governed by less random dynamics compared to the other rooms,
which makes the fit better (in terms of RMSE, see Fig. 6). The reason
hereof is, first, that the room seems not to be occupied. Second, the
magnitude of the estimated average solar gain in Fig. 9(b) is small. This
small contribution of the solar radiation matches the fact that the room
points toward north and less to none solar radiation enters during the
day.

The estimated thermostatic valve function is displayed in Fig. 9(c).
Its shape is simple and suggests that the valves close completely at 1◦C
above the set-point and opens fast below that point. It could indicate
that the room temperature reaction to the set-point is consistent.

Figs. 9(d) and 9(e) show the histogram and autocorrelation of the
1-step prediction residuals respectively. The shape of the histogram is
more narrow compared to the other rooms (and again too large tails),
and the autocorrelation function is insignificant. The good fit may again
be due to the few disturbances and few random fluctuations in the room
temperature.
8

5.4. Discussion and summary

The overall picture from the results is, that the models are very
suitable for temperature predictions for many hours ahead. The RMSE
indicates that the performance is on par or better compared to the state-
of-the-art in the literature. And at the same time, their consistency in
terms of RMSE emphasises the robustness of the identification. The
indoor air temperature has significant diurnal variations, which are
captured well. The solar radiation effect is successfully isolated by the
model and is easily interpreted and is in alignment with physics. The
estimated valve functions turned out being significantly different for
each room, which confirms the need for room-specific air temperature
models in general. A possibly significant effect neglected in the mod-
els presented in this paper, is the heat transmission between rooms.
However, to model this effect requires all models to be estimated
simultaneously, and to identify all neighbouring rooms. This is left for
further studies. The flexibility of the valve function is visible from the
results and captures what seems to be sudden changes in the dynamics.
E.g. for room C1.09 where the valve closes fast when lowering the
set-point below the measured temperature.

5.4.1. Potential energy savings in optimal control
The presented ARX models do not have knowledge of the heat load

of the individual rooms. This makes direct control of the heat usage
infeasible. However, the second regression term in (20) describes the
increase in air temperature caused by the radiators, ∑𝑚 𝛽2,𝑚B𝑚𝑥valve,𝑡.
Therefore, instead of using the heat load in an objective function in an
economic MPC, the air temperature increase as in (20) may be used
instead. In such a setup, the room temperatures respond to a price
signal instead of the heat load. But this produces the same result under
the assumption that the air temperature increase and the heat load are
significantly correlated. A possible optimal control problem for each
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Fig. 9. Modelling results of room C1.09.
room could look like the following

min
𝑇set,𝑡+𝑘

𝑁−1
∑

𝑘=0
𝑐𝑘 ⋅ 𝑥valve,𝑡+𝑘 (22a)

s.t. Eq. (20) (22b)

𝑇min,𝑡+𝑘+1 ≤ 𝑌𝑡+𝑘+1 ≤ 𝑇max,𝑡+𝑘+1 (22c)

where 𝑐𝑘 is a time-varying price signal, and 𝑇min,𝑡+𝑘+1 and 𝑇max,𝑡+𝑘+1
are upper and lower temperature bounds. In such a control setup,
the price in the objective function, 𝑐𝑘, is related to the temperature
increase in the room at time 𝑡𝑘, and not the heat usage. However,
due to the presumably high correlation between the two variables,
the optimal control sequences of the two problems may be highly
correlated. Further work on this control strategy is needed to clarify
its potential.

6. Conclusion and future work

This paper presented room air temperature models for individual
rooms of a Danish school building, and identified non-linearities in
the system arising from the time-varying solar gain and the heat input
from the radiators. It is proposed to model the varying solar gain
by a B-spline basis expansion and the thermostatic valve state using
Hermite-polynomials that guarantees monotonicity of the function. The
proposed ARX model for each room was consequently non-linear in
the parameters, which required us to perform a two-stage identification
procedure to estimate these parameters.

However, the individual room temperature models have no knowl-
edge of the their individual heat usage, which is necessary for e.g. peak
shaving or load shifting optimisation. To estimate and control the heat
consumption, one needs a model of the entire building (since the heat
consumption on building level is known). An interesting future work
direction could be toward using the individual room models to predict
9

the entire building heat load. With such a model, it is possible to enable
flexible control of the building while considering each room’s needs.

The individual room temperature models may also be used for
fault detection and live diagnostics. For instance, to identify if a room
responds slowly or not at all to a set-point increase. They can also be
used to identify outliers in operations, to identify e.g. bad occupant be-
haviour or if a valve breaks etc. In an online monitoring and reporting
setup, this may help alert building operators and identify what rooms to
pay attention to in order to improve the indoor climate in the building
and optimise operations.
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