
Applied Energy 298 (2021) 117164

A
0

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Experimental evaluation of model-free reinforcement learning algorithms for
continuous HVAC control
Marco Biemann a,b, Fabian Scheller a, Xiufeng Liu a,∗, Lizhen Huang b,∗

a Department of Technology, Management and Economics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
b Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, 2815 Gjøvik, Norway

A R T I C L E I N F O

Keywords:
Reinforcement learning
Continuous HVAC control
Actor-critic algorithms
Robustness
Energy efficiency
Soft Actor Critic

A B S T R A C T

Controlling heating, ventilation and air-conditioning (HVAC) systems is crucial to improving demand-side
energy efficiency. At the same time, the thermodynamics of buildings and uncertainties regarding human
activities make effective management challenging. While the concept of model-free reinforcement learning
demonstrates various advantages over existing strategies, the literature relies heavily on value-based methods
that can hardly handle complex HVAC systems. This paper conducts experiments to evaluate four actor-critic
algorithms in a simulated data centre. The performance evaluation is based on their ability to maintain thermal
stability while increasing energy efficiency and on their adaptability to weather dynamics. Because of the
enormous significance of practical use, special attention is paid to data efficiency. Compared to the model-
based controller implemented into EnergyPlus, all applied algorithms can reduce energy consumption by at
least 10% by simultaneously keeping the hourly average temperature in the desired range. Robustness tests
in terms of different reward functions and weather conditions verify these results. With increasing training,
we also see a smaller trade-off between thermal stability and energy reduction. Thus, the Soft Actor Critic
algorithm achieves a stable performance with ten times less data than on-policy methods. In this regard, we
recommend using this algorithm in future experiments, due to both its interesting theoretical properties and
its practical results.
1. Introduction

Energy consumption in buildings accounts for about 40% of global
energy consumption [1]. Heating, cooling and ventilation contribute
most in building energy consumption and therefore play a pivotal role
in mitigating global warming [2]. For example, heating accounts for
more than 50% of energy consumption in cold regions during the win-
ter [3]. Effective HVAC control can significantly improve building en-
ergy efficiency and indoor thermal comfort, thus supporting the inter-
national sustainable development goals. On the other hand, the grow-
ing complexities associated with energy transformations requires inno-
vative smart control systems. In this context, energy-related demand-
response control operations should be able to cope with stochastic en-
vironmental influences, volatile energy pricing, potential power short-
ages, the intermittency of renewable energy sources, and changes in
consumption behaviour.

Nowadays, the HVAC management systems of most current residen-
tial buildings use classical algorithms, such as rule-based controllers or
proportional, integral and derivative controllers (PID). However, due to
the high inertia of thermodynamics, these controllers often overshoot

∗ Corresponding authors.
E-mail addresses: marcob@dtu.dk (M. Biemann), fjosc@dtu.dk (F. Scheller), xiuli@dtu.dk (X. Liu), lizhen.huang@ntnu.no (L. Huang).

the target temperature, leading to additional energy consumption and
reduced thermal comfort. These controllers do not include domain-
specific knowledge and cannot use historical data or model predictions.
Model Predictive Control (MPC) formulates these challenges as a con-
strained optimisation problem [4]. For example, based on temperature,
demand, and price forecasts, the controller determines when to preheat
a building, thus reducing peak energy demand and saving energy costs.
However, it only works properly with an accurate and detailed model,
requiring expert knowledge for development and calibration. This im-
plies that this paradigm is hardly scalable, as each building is unique
and has its own requirements. Therefore, developing a common build-
ing energy management model for different types of buildings presents
a serious challenge to the widespread deployment of MPC. Moreover,
growing complexities such as the stochastic nature of renewables are
increasingly difficult to address mathematically.

Due to the increasing popularity of Machine Learning (ML) methods,
we aim to devise a good management strategy using data instead
of complex mathematical models. Reinforcement Learning (RL) con-
trollers have started being increasingly assessed in HVAC management
vailable online 8 June 2021
306-2619/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.apenergy.2021.117164
Received 2 March 2021; Received in revised form 12 May 2021; Accepted 23 May
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2021

Applied Energy 298 (2021) 117164M. Biemann et al.
systems [5,6]. The most widely used approach is to create a simula-
tion environment to generate the necessary data required to train the
algorithm [7]; the idea being to copy the controller into a physical
building and continue training there. In contrast to MPC, the model
is only required for generating the training data, not for computing the
control strategy. Further advantages of RL are that the operation of the
algorithms does not require weather or price forecasts, as they can be
learned using training data. Once the training has been completed, the
operation is associated with much lower computational costs than MPC.
However, RL comes with its own limitations, mostly data efficiency,
meaning that it requires large amounts of data for training. This makes
it inconvenient to train directly in a physical building. Therefore, the
need for a model cannot yet be eliminated, as a simulation environment
is still required for training. In this paper, we focus on the evaluation
of model-free algorithms, but also mention that MPC and RL can be
combined into model-based RL to learn to predict future states for
control [8,9].

Demand-response or HVAC management requires adaptation to ex-
ternal factors that cannot be influenced by the agent, such as the
weather, prices and human indoor activities. These parameters vary
continuously, so in order to keep the temperature within a fixed range,
we are interested in managing the setpoint temperature continuously
as well, as this allows for finer operation than if we would set it
to predefined values. The most commonly used algorithm [6], Deep
𝑄-learning (DQN), is unable to handle such problems, as it only works
in discrete action spaces. This motivates us to investigate other RL al-
gorithms that have rarely been used in HVAC applications. As noted by
Wölfle et al. [10], most existing studies in building energy management
do not compare algorithms with each other, contrary to what the ML
literature suggests [11]. This makes it challenging to emphasise the
possible strengths and downsides of the algorithms for this application.
Note also that the environments in the building management sector are
significantly different from the mostly deterministic environments the
algorithms are commonly tested on [12], as the agent needs to react to
multiple stochastic factors.

We evaluate the algorithms on a simulated medium-sized data
centre environment, which represents a typical problem for HVAC
management. The objective is to minimise energy consumption while
keeping the indoor temperature within a pre-defined range for the
servers in a data centre. This is important, as a high indoor temperature
has a significant impact on computing performance and server lifespan,
while overcooling can increase energy consumption [13]. This paper
will evaluate four state-of-the-art RL algorithms for continuous control:
Soft Actor Critic (SAC), Twin Delayed Deep Deterministic Policy Gra-
dients (TD3), Trust Region Policy Optimisation (TRPO) and Proximal
Policy Optimisation (PPO) on a common open-source environment. We
evaluate the performance in terms of energy savings, thermal stability,
robustness and data efficiency. In summary, this paper makes the
following contributions:

− We conduct experiments to evaluate and compare the perfor-
mance of RL algorithms in an open-source benchmark project in
terms of energy consumption and indoor climate management.
We show that all algorithms are reliably able to maintain tem-
perature, while reducing energy consumption. This emphasises
the ability of these RL algorithms to learn the task consistently
without having to run time-intensive hyperparameter searches,
which is often challenging for real-world implementations.

− We conduct experiments to study the adaptability of the algo-
rithms to the weather dynamics. We demonstrate the robustness
of the agents, which reliably manage to maintain the temperature
under new weather conditions.

− We show that there is a trade-off between energy consumption
and thermal stability, in the sense that some algorithms have a
lower energy consumption, whereas others are better at keeping
the temperature within the desired range. With longer training,
2

the results of the algorithms become more similar.
− We analyse the data efficiency of the algorithms and demonstrate
that SAC is able to learn the task with significantly less data
than state-of-the-art on-policy algorithms, while enjoying a stable
learning process. Surprisingly, TD3 does not reach a performance
comparable to SAC, suggesting that deterministic policies may not
be adapted for stochastic environments. The theoretical properties
that may explain these results are presented with the current case
study in mind.

The rest of this paper is structured as follows. Section 2 surveys the
related work. Section 3 introduces the theoretical background of RL.
Section 4 explains the RL algorithms. Section 5 presents a case study
of HVAC control in a data centre. Section 6 conducts experiments and
analyses the results. Section 7 concludes the paper.

2. Related work

The idea of using RL in HVAC was first proposed by Mozer [14],
who installed a smart control system into a former school building.
The control system can adapt both HVAC and lighting to the occu-
pants’ wishes. In recent years, RL has received increasing attention
in the building energy domain, where HVAC controllers have been
used to automating energy control, taking external constraints into
account such as indoor comfort, occupancy and energy price. RL-based
applications have been developed for the management of HVAC, water-
heaters, energy storage, battery-charging, smart appliances and more.
For more information about the applications of RL in demand-response
applications, we refer to multiple reviews in the area. For example,
Vázquez-Canteli and Nagy [15] reviewed the use of RL in various
demand response applications, Han et al. [16] focused on occupant
comfort, Wang and Hong [6] reported on the quantitative use of
algorithms in the literature, and Perera and Kamalaruban [5] concluded
that state-of-the-art algorithms such as TD3 or SAC were too rarely
applied, hindering performance improvements.

With regard to the building energy sector, Henze and Schönmann
[17] and Liu and Henze [18] used RL to manage a thermal energy
storage system. The results showed that an RL-based controller can
reduce costs, but requires significant amounts of data for training
in order to achieve a performance similar to traditional predictive
methods. In [7,19], Liu and Henze developed a method of using a
simulated environment to pre-train the agent before deploying it into a
real-world building, as is commonly done today. The simulation model
does not have to be perfectly accurate. Instead, it only requires the
same states and actions as the learning controller during deployment.
The same network and weights are used, but they will have to be
continuously updated to improve performance further and minimise the
impact of the shift from simulation to reality.

In recent years, models that are based on simplified thermodynamic
equations have been increasingly replaced by realistic, complex build-
ing simulators, such as EnergyPlus. Moriyama et al. [20] explain how
to combine EnergyPlus with RL agents and provided an open-source
example of such an environment, which we use in this paper. Zhang
et al. [21] discuss how to use EnergyPlus for real-world deployment
and its challenges.

In the ML community, it is common to evaluate the performance of
algorithms using large standardised open-source data sets or learning
environments. This facilitates algorithm benchmarking and compari-
son, permitting a discussion of the advantages and limitations of the
algorithms. As noted by Vázquez-Canteli and Nagy [15] and Wölfle
et al. [10], this is significantly different in the building simulation
community. The algorithms are trained and evaluated on similar prob-
lems, but with different physical properties and dynamics. Only a few
papers evaluate and compare multiple algorithms in the same case
study, which would help users in selecting algorithms. In addition, the
evaluation is often done on a single building. The generality of the

approach can be questioned.

Applied Energy 298 (2021) 117164M. Biemann et al.

r
F

t
p
c

𝑝

T
w

𝐽

T
T
i

o
𝑠
a
b

𝑉

Recent years have seen some major breakthroughs in RL, such as
attaining super-human performances in video games [22] and Go [23].
This led to new algorithms, significantly improving on classical meth-
ods, as well as the increased visibility and popularity of the field.
The first approaches [17,18] used tabular 𝑄-learning, but in order
to apply this, the state–action space had first to be made discrete.
The controller was able to learn the task, but the approach proved
to be data-inefficient and sensitive to the choice of the discretisation.
Ruelens et al. [24] used an autoencoder to reduce the complexity of
the states, allowing applications with infinite state spaces. They used
the fitted 𝑄-iteration algorithm based on experience replay to deal
with sample efficiency. In subsequent work [25,26], the trained policy
was modified to incorporate domain knowledge to obtain a better
performance. Recent studies favour end-to-end approaches, where the
𝑄-function is directly approximated by a neural network. The DQN
algorithm is a popular choice for HVAC control due to its simplicity
and data-efficiency. For example, Wei et al. [27] used DQN to deal
directly with the large state space in an application to a multi-zone
building. However, in order to be applied, the action space needed to
be discretised. A sufficiently fine discretisation increases the number
of actions exponentially, making the algorithm increasingly difficult to
train for problems requiring the control of additional parameters [28].
To address this problem, they trained a separate network for each zone,
which is computationally expensive.

To deal with continuous action spaces, Wang et al. [29] used on-
policy actor-critic methods. Li et al. [30] used the Deep Deterministic
Policy Gradient (DDPG) algorithm to maintain similar data-efficiency
to DQN. The study by Gao et al. [31] showed that continuous control
algorithms, such as DDPG, can outperform DQN or tabular 𝑄-learning.
Similar conclusions were drawn by Du et al. [32]. On-policy algorithms,
such as PPO, are often used as a baseline [8,9], because they are
stable and fast to train. However, policy gradient algorithms are not
yet widespread in the building energy community. A possible reason for
this is that early algorithms, such as DDPG, are notoriously difficult to
train [33], as their performance is sensitive to hyperparameters. On the
other hand, PPO suffers from data efficiency, requiring large numbers
of samples to train the algorithm, and making it unsuitable for real-
world applications. Algorithms that are both data-efficient and stable
have since been introduced in the RL community. SAC has recently
been applied to multi-agent problems [34,35], but the advantages
compared to other algorithms were not highlighted.

Finally, we uncovered only few papers in the literature that study
robustness and generalisation, important points to consider for real-
world applications. Xu et al. [36] and Lissa et al. [37] discussed
how well the agent generalises to different environment dynamics.
For example, in Xu et al. [36], the agent was trained in a given
environment and evaluated on a slightly different environment with
different building layouts, weather data and construction materials.

In summary, RL has increasingly been applied to HVAC case studies
in recent years. Nevertheless, we identified two gaps that slowed down
the research in the field. First, multiple papers use tabular methods
or DQN for problems that would naturally be defined as continuous
control tasks. Second, most papers discuss the implementation of one
algorithm in a novel case study; there are few papers comparing
different algorithms. This motivated a comparative study of continuous
control algorithms that are better suited to handling such problems. We
also used this opportunity to discuss related technical properties, such
as robustness and data efficiency that were not given the importance
they deserve, given their practical importance for potential real-world
deployments.

3. Theoretical background

This section will first present the theoretical framework of RL,
which is based on Markov Decision Processes, and then present theory
on policy gradients. These results will motivate the updates of the
3

presented RL algorithms.
3.1. Reinforcement learning

Reinforcement learning (RL) is a computational approach to
decision-making under conditions of uncertainty [38,39]. The learning
problem can be defined as a Markov Decision Process (MDP), which
epresents the interaction between an agent and the environment.
ormally, an MDP is a quintuple (,, 𝑝, 𝜌, 𝑟), where

− ⊂ R𝑛 is the state space.
− ⊂ R𝑚 is the action space.
− 𝑝 ∶ ×× → [0, 1] is the state-transition probability, correspond-

ing to the probability of going from state 𝑠 to state 𝑠′ by means
of action 𝑎.

− 𝜌 ∶ → [0, 1], is the initial state probability, corresponding to the
probability of starting at state 𝑠.

− 𝑟 ∶ × → R is the reward (or cost) function.

The state and action spaces are domain-specific; this will be described
later. The transition probability 𝑝 represents the physics of the system.
Unlike MPC, it is unknown to the agent, to which it tries to adapt by
trial and error. The reward function is similar to a cost function, which
is usually the objective function in a control problem.

The policy is a probability distribution 𝜋 ∶ × ⟶ [0, 1], giving
the probability of taking an action 𝑎 ∈ in an state 𝑠 ∈ . The policy
learned can be either deterministic or stochastic, and depends on the
specific algorithm.

To define the optimisation objective, we introduce the notion of a
trajectory 𝜏, that is a sequence of state–action pairs (𝑠𝑡, 𝑎𝑡)𝑡≥0, where
he states are returned by the environment and the actions follow the
olicy 𝜋. As illustrated in Fig. 1, the probability of a given trajectory 𝜏
an be factorised as [40]:

𝜋 (𝜏) = 𝜌(𝑠0)
∏

𝑡≥0
𝜋(𝑎𝑡 ∣ 𝑠𝑡)𝑝(𝑠𝑡+1 ∣ 𝑎𝑡, 𝑠𝑡). (1)

he (maximum entropy) RL objective (see e.g. [41]) is defined as follows,
here for 𝛾 ∈ (0, 1) and 𝛼 ≥ 0,1 we have:

soft(𝜋) = E𝜏∼𝑝𝜋

[

∑

𝑡≥0
𝛾 𝑡
(

𝑟(𝑠𝑡, 𝑎𝑡) − 𝛼 log𝜋(𝑎𝑡 ∣ 𝑠𝑡)
)

]

. (2)

he objective of RL is to find a policy 𝜋∗ that maximises 𝐽 soft(𝜋).
his objective generalises slightly the traditional RL objective presented

n [39], which we can recover by setting 𝛼 = 0 and denote by 𝐽 (𝜋).
The majority of RL algorithms aims to learn a value function 𝑉𝜋 (𝑠)

r 𝑄𝜋 (𝑠, 𝑎). The first tells what the expected reward is at a given state
, while the second tells us what the expected reward is, when taking
ction 𝑎 in state 𝑠. The state-value function is defined as follows (it can
e reverted to the traditional definition of 𝑉𝜋 (𝑠) by setting 𝛼 = 0):

sof t
𝜋 (𝑠) = E𝜏∼𝑝𝜋

[

∑

𝑘≥0
𝛾𝑘

(

𝑟
(

𝑠𝑡+𝑘, 𝑎𝑡+𝑘
)

− 𝛼 log𝜋
(

𝑎𝑡+𝑘 ∣ 𝑠𝑡+𝑘
))

|

|

|

𝑠𝑡 = 𝑠

]

.

(3)

We take the expectation over all trajectories starting at state 𝑠. This
definition is strongly related to the optimisation objective, yielding the
relationship 𝐽 soft(𝜋) = E𝑠0∼𝜌[𝑉

soft
𝜋 (𝑠0)].

The action-value function or simply 𝑄-function (where 𝑄 stands for
quality) is strongly related to 𝑉𝜋 (𝑠). It can be defined by the following
equation (see [39] for more details):

𝑄sof t
𝜋 (𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾E𝑠′∼𝑝(⋅∣𝑠,𝑎)

[

𝑉 sof t
𝜋

(

𝑠′
)]

. (4)

1 The discount factor 𝛾 can be regarded as a moving effective time horizon.
It is introduced to make the series converge mathematically in infinite-horizon
tasks, typically close to 1. In the literature, 𝛼 is called temperature and addresses
the trade-off between reward and entropy, but we do not insist on this
terminology here to avoid confusion with our case study. The SAC algorithm

aims to maximise this more general objective.

Applied Energy 298 (2021) 117164M. Biemann et al.

s
l
(
s
p
t

t
t
i
p
i
o
v
t
o
a
s
e
e

3

m
t
e
n
r
a

w
a
d
f
t
i

∇

Fig. 1. Illustration of a graphical model of an MDP.
T
t
v
a
m
t
t
o
d
s
(
t
u

4

b
a
a
T
p

u
(
s
n
p

r
o
l
i
O
f
a
e
i
t
r

i
a

In addition, we have the Bellman equation:

𝑉 sof t
𝜋 (𝑠) = E𝑎∼𝜋(⋅∣𝑠)

[

𝑄sof t
𝜋 (𝑠, 𝑎) − 𝛼 log𝜋(𝑎 ∣ 𝑠)

]

. (5)

If we can find the optimal 𝑄-function 𝑄∗(𝑠, 𝑎) = max𝜋 𝑄soft
𝜋 (𝑠, 𝑎), we

can express an optimal policy 𝜋∗ in terms of 𝑄∗. Value-based methods
work by iterating the recurrent relationship of the two Eqs. (4) and (5).
In the traditional RL setting (𝛼 = 0), an optimal policy is given by the
greedy policy:

𝜋∗(𝑎 ∣ 𝑠) =

{

1 if 𝑎 = argmax
𝑎∈

𝑄∗(𝑠, 𝑎),

0 otherwise.
(6)

In the maximum entropy RL setting, an optimal policy can be given
by the softmax policy (see [41] for the proof), given by:

𝜋∗
soft (𝑎 ∣ 𝑠) =

exp
(

𝛼−1𝑄∗(𝑠, 𝑎)
)

∫ exp
(

𝛼−1𝑄∗ (𝑠, 𝑎′)
)

𝑑𝑎′
. (7)

Note that if 𝛼 → 0, we have 𝜋∗
soft(𝑎 ∣ 𝑠) → 𝜋∗(𝑎 ∣ 𝑠), recovering

the greedy policy (6) of the traditional RL objective. Hence, if 𝛼 is
mall, the policy tends to be deterministic, whereas when 𝛼 becomes
arge, it tends to take completely random actions. Note that this policy
sometimes called Boltzmann exploration) has been used in the HVAC
etting. The studies in [18,24] have validated the fact that exploration
olicy performs better than the greedy (and 𝜀-greedy) policy in the
abular setting.

A learning algorithm maximising the maximum entropy RL objec-
ive introduces some randomness into the policy, in contrast to the
raditional value-based methods that learn a deterministic policy. This
s useful, as it handles exploration naturally during training. Besides, a
olicy optimising the maximum entropy objective learns to solve a task
n multiple ways, while a traditional agent aims to solve the task in an
ptimal, but unique way. This implies that stochastic policies can pro-
ide a better initialisation for transfer learning than deterministic func-
ions. Furthermore, it is probable that in our application the dynamics
f the system change over time, e.g., climate, energy prices, occupancy
nd the building’s physical conditions. The soft agent (e.g. from SAC)
hould have fewer difficulties in adapting to the stochasticity of the
nvironment, the domain shift between the simulated and physical
nvironments, or to non-stationary dynamics [42].

.2. Policy gradients

Policy gradients provide the theoretical basis for the actor-critic
ethods. Since commonly used value-based methods (based solely on

he Bellman equation) are unable to handle continuous control (we
xplain why in Section 4.1), a discretisation of the action space becomes
ecessary, as discussed in Section 2. Policy gradient methods do not
equire it, so it is more natural to apply these methods to HVAC
pplications.

To learn a policy, we parameterise the policy 𝜋𝜃(𝑎 ∣ 𝑠), using
eights 𝜃 ∈ R𝑑 . The policy can be described using various function
pproximators, but it is now common to use a neural network. Let us
enote by 𝐽 (𝜃) = 𝐽 (𝜋𝜃) the expected reward. We define the advantage
unction 𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) −𝑉𝜋 (𝑠), quantifying how much better it is to
ake action 𝑎 in state 𝑠 over the average action. A fundamental result
s the policy gradient theorem [43], i.e.,

𝜃𝐽 (𝜃) =
1 E𝑠∼𝜌𝜋𝜃 ,𝑎∼𝜋

[

∇𝜃 log𝜋𝜃(𝑎 ∣ 𝑠)𝐴𝜋 (𝑠, 𝑎)
]

, (8)
4

1 − 𝛾 𝜃 𝜃
where

𝜌𝜋𝜃 (𝑠) = (1 − 𝛾)E𝑠′∼𝜌

[

∑

𝑡≥0
𝛾 𝑡𝑝(𝑠′ → 𝑠, 𝑡, 𝜋𝜃)

]

(9)

and 𝑝(𝑠′ → 𝑠, 𝑡, 𝜋𝜃) is the probability of the transition from 𝑠0 = 𝑠′ to
𝑠𝑡 = 𝑠, when following the policy 𝜋𝜃 .

For continuous action spaces, there is a similar result [44] for
deterministic policies 𝜇𝜃 ∶ → ,2 i.e.,:

∇𝜃𝐽 (𝜃) =
1

1 − 𝛾
E𝑠∼𝜌𝜇𝜃

[

∇𝑎𝑄𝜇𝜃 (𝑠, 𝑎)|𝑎=𝜇𝜃 (𝑠)∇𝜃𝜇𝜃(𝑠)
]

. (10)

he actor is typically updated using the gradient estimates of the
heorems above, via a gradient descent algorithm. For example, Ad-
antage Actor-Critic (A2C) [45] uses the policy gradient theorem (8),
nd Deep Deterministic Policy Gradient (DDPG) [28] uses the deter-
inistic gradient theorem (10). The drawback of these estimates is

heir high variance, making the learning process unstable. For example,
he A2C algorithm needs crucially multiple actors to collect data in
rder to reduce the risk of catastrophic updates. Schulman et al. [46]
eveloped theoretical policy improvement guarantees to provide more
table learning. They are used in the Trust Region Policy Optimisation
TRPO) [46] algorithm to provide a more stable on-policy algorithm
han A2C. The subsequent Proximal Policy Optimisation (PPO) [47]
ses heuristics to increase the reliability of the learning process.

. Algorithms

In general, RL algorithms can be divided into two families: value-
ased methods and actor-critic methods. While value-based methods
re inspired by the value iteration algorithm in dynamic programming,
ctor-critic methods are inspired by the policy iteration algorithm [39].
he latter are more convenient in handling continuous control, so this
aper focuses on them.

RL algorithms can be off-policy or on-policy. Off-policy methods can
se data sampled from any policy, as well as expert demonstrations
by a human or rule-based controller). In contrast, on-policy methods
hould only use data sampled from the current policy to update the
etwork. An overview of the most popular algorithms and its main
roperties is given in Table 1.

In applications where data is expensive or slow to generate (e.g.,
obotics, HVAC), off-policy methods are generally preferred because
f their data-efficiency (e.g., we can store the data and reuse them
ater in the training process). The drawback is the absence of policy
mprovement heuristics, making the algorithms more difficult to train.
n-policy methods are generally faster and more stable, which is useful

or applications where data can be generated quickly (e.g., if we have
ccess to a simulator). However, on-policy methods are not sample-
fficient, as they must discard the collected data every time the policy
s updated. In real-world HVAC applications, data collection is slow,
herefore, off-policy algorithms can offer a great advantage. For this
eason, this paper will mainly focus on off-policy algorithms.

The learning scheme for critic-actor methods is similar to the policy
teration algorithm in dynamic programming, as shown in Fig. 2. An
ctor-critic algorithm is composed of two networks: a critic for the

2 We refer to the deterministic policy as 𝜇𝜃(𝑠) to distinguish it from 𝜋𝜃(𝑎 ∣ 𝑠),
which is stochastic.

Applied Energy 298 (2021) 117164M. Biemann et al.

i

Fig. 2. A typical scheme for generating data and training an off-policy actor-critic algorithm. An on-policy algorithm learns 𝑉𝑤(𝑠), instead of 𝑄𝑤(𝑠, 𝑎) and generates trajectories,
nstead of single samples. The main difference between the algorithms will be the definition of the loss 𝐿(𝑤).
Table 1
Description of the main properties of popular RL algorithms.
Algorithm Data usage Action space Critic update, eq no. Actor Actor update, eq. no

DQN [22] Off-policy Discrete (12) – –
A2C [45] On-policy Discrete/Continuous (D.2) Gaussian (8)
DDPG [28] Off-policy Continuous (13) Deterministic (16)
TD3 [48] Off-policy Continuous (14) Deterministic (16)
SAC [49] Off-policy Continuous (15) Gaussian (17)
TRPO [46] On-policy Discrete/Continuous (D.2) Gaussian (D.4)
PPO [47] On-policy Discrete/Continuous (D.2) Gaussian (D.8)
approximation of 𝑄∗(𝑠, 𝑎) or 𝑉 ∗(𝑠), and an actor to learn the optimal
policy 𝜋∗(𝑎 ∣ 𝑠). The critic’s predictions are used to update the actor.
Once the actor is updated, we re-run the policy in the environment to
obtain better samples for training.

4.1. Off-policy methods

Off-policy algorithms focus on obtaining good estimates of the critic
𝑄𝑤(𝑠, 𝑎), which is learned using variants of the Bellman equation. The
policy is learned using the policy gradient theorem.

4.1.1. Critic network
The critic is a function telling the agent the value of states or

actions to guide its decisions. Typical examples are 𝑄𝜋 (𝑠, 𝑎) or the value
function 𝑉𝜋 (𝑠). Algorithms learning only the critic are called value-based
methods and have been studied in depth for the tabular case (finite
state–action space), e.g. in [39].

Tabular methods are not convenient here, as many real-world ap-
plications have an infinite state space. Hence, we are interested in
algorithms that approximate the optimal 𝑄-function. It is then common
to approximate the optimal 𝑄-function by a neural network 𝑄∗(𝑠, 𝑎) ≈
𝑄𝑤(𝑠, 𝑎). However, as learning this function is challenging, two impor-
tant concepts are introduced: experience replay and target networks.

Experience replay aims to improve data efficiency and is used
in [22,50] and most subsequent off-policy algorithms. The idea is
to store the transitions (𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1) into a replay buffer. To im-
prove data-efficiency, we sample mini-batches from the replay buffer
to update the weights of the network. Target networks improve the
stability of the Bellman targets. We introduce a network 𝑄�̄�(𝑠, 𝑎), which
has the same architecture as the original network, but its weights
are updated more slowly. The target weights are often updated using
Polyak averaging [28].

Training the critic often involves learning the 𝑄-function by min-
imising the loss function:

𝐿(𝑤) = 1E ′

[

(

𝑦(𝑠, 𝑎, 𝑠′) −𝑄 (𝑠, 𝑎)
)2
]

, (11)
5

2 (𝑠,𝑎,𝑠)∼ (𝐷) 𝑤
where the data is sampled from the replay buffer, and where 𝑦(𝑠, 𝑎, 𝑠′)
is the Bellman target that varies between different algorithms. In
DQN [22], the following target is used:

𝑦𝐷𝑄𝑁 (𝑠, 𝑎, 𝑠′) = 𝑟(𝑠, 𝑎) + 𝛾 max
𝑎′∈

𝑄�̄�(𝑠′, 𝑎′). (12)

The Bellman update of DQN in (12) does not use an actor, but
uses instead the greedy policy to choose the action with the highest
𝑄-value. This approach works well in small action spaces, but not
for continuous control tasks. The reason is that the maximum in (12)
becomes expensive to compute in infinite action spaces. We will focus
on the following two algorithms: TD3 [48] and SAC [49]. TD3 is an
algorithm that provides improvements over the DDPG algorithm [28],
which is commonly applied in the HVAC settings, e.g., [30,31]. It
is the continuous analogue of the Double DQN algorithm [51,52],
aiming to learn the greedy policy 𝜇𝜃(𝑠) ≈ argmax𝑎∈ 𝑄𝑤(𝑠, 𝑎) using a
neural network. TD3 aims to combat an overestimation bias using two
different critic networks, resulting in more stable learning and better
performance. In contrast, the SAC algorithm optimises the maximum
entropy RL objective, aiming to learn the softmax policy, which is
stochastic. Inspired by TD3, the SAC algorithm also learns two critics
to give better estimates of the 𝑄-values.

We briefly described the Bellman targets for the loss function in
(11), which are used to update the critic. The DDPG algorithm uses
the following update:

𝑦𝐷𝐷𝑃𝐺
(

𝑠, 𝑎, 𝑠′
)

= 𝑟(𝑠, 𝑎) + 𝛾𝑄�̄�
(

𝑠′, 𝜇�̄�
(

𝑠′
))

, (13)

in which we use the target networks to compute the Bellman target to
increase stability, but replace the maximisation of (12) by using the
actor. The TD3 algorithm uses the minimum between the two target
networks to calculate the residuals:

𝑦𝑇𝐷3
(

𝑠, 𝑎, 𝑠′
)

= 𝑟(𝑠, 𝑎) + 𝛾 min 𝑄�̄�
(

𝑠′, 𝜇�̄�
(

𝑠′
)

+ 𝜀
)

, (14)

𝑗=1,2 𝑗

Applied Energy 298 (2021) 117164M. Biemann et al.

n

where 𝜀 ∼ (0, 𝜎) is some noise (with 𝜎 small).3 For the SAC algorithm,
we use the following loss, which minimises the Bellman error of the
maximum entropy RL objective:

𝑦𝑆𝐴𝐶
(

𝑠, 𝑎, 𝑠′
)

= 𝑟(𝑠, 𝑎) + 𝛾
(

min
𝑗=1,2

𝑄�̄�𝑗

(

𝑠′, 𝑎′
)

− 𝛼 log𝜋𝜃
(

𝑎′ ∣ 𝑠′
)

)

, (15)

where we sample 𝑎′ ∼ 𝜋𝜃(⋅ ∣ 𝑠′). Note that all these updates are variants
of the Bellman Eq. (5).

4.1.2. Actor network
For both DDPG and TD3, the policy network is updated using

the deterministic policy gradient theorem (10). The estimates of the
gradient

∇𝜃𝐽 (𝜃) ≈ E𝑠∼ (𝐷)

[

∇𝑎𝑄𝑤(𝑠, 𝑎)|𝑎=𝜇𝜃 (𝑠)∇𝜃𝜇𝜃(𝑠)
]

(16)

can be used in a gradient descent type algorithm to update the weights
of the policy network. Note that this gradient uses the estimates of the
critic to update the weights.

The policy 𝜋𝜃 in the SAC algorithm is typically parameterised by
a Gaussian distribution.4 The idea, justified theoretically in [49], is to
minimise the Kullback–Leibler divergence between 𝜋𝜃 and the softmax
policy. It aims to find the weights of the neural network that match
the closest the softmax policy. This is equivalent to minimising the
following loss:

𝐿𝜋 (𝜃) = E𝑠∼ (𝐷),𝑎∼𝜋𝜃

[

𝛼 log𝜋𝜃(𝑎 ∣ 𝑠) −𝑄𝑤(𝑠, 𝑎)
]

. (17)

The gradient of this loss can be computed analytically and strongly
resembles the DDPG update (16) (see [53] for the exact expression).

4.2. On-policy methods

For on-policy methods, the difficulty is to find good updates for the
policy network, that give stable policy improvement guarantees. We
refer to Appendix D for more details. This is motivated by the fact that
our discussion will focus on off-policy methods, due to their increased
data efficiency.

5. Case study

In this section, we use a data-centre case study to evaluate RL
algorithms for continuous HVAC control.

5.1. Simulation environment

We simulate the data centre HVAC system with the building en-
ergy model (BEM) tool EnergyPlus, and train the RL algorithms with
the OpenAI Gym framework [12]. The interaction between the Gym
environment and the BEM is handled by the open-source wrapper
from [20]. The wrapper sends the agent’s actions to the simulator and
waits until a state is returned. The wrapper then computes the reward
and returns it along with the state back to the agent.

To obtain a fair comparison with other approaches, we implement
the same environment as in [8,20]. The data centre case study is
chosen, as it has complex HVAC systems. It corresponds to an example
environment in EnergyPlus, representing a two-room data centre.5 The
original file is modified by replacing the existing controller with an

3 Policy smoothing is introduced to ensure that states located in the same
eighbourhood have similar 𝑄-values. This makes the agent less sensitive to

perturbations.
4 The algorithm uses a neural network, taking a state 𝑠 as an input and the

mean 𝜇𝜃(𝑠) and a diagonal covariance matrix 𝜎𝜃(𝑠) as output. Then, the mean
and covariance can be used to describe the Gaussian distribution. The output
𝑎 is then sampled from this distribution.

5

6

The name of the file is 2ZoneDataCenterHVAC_wEconomizer.idf.
Table 2
Description of the state space.

Description Notation Range Unit

Outdoor air temperature 𝑇out [−20, 50] ◦C
West zone air Temperature 𝑇west [−20, 50] ◦C
East zone air temperature 𝑇east [−20, 50] ◦C
IT equipment demand power 𝑃it [0, 1] GW
HVAC electric demand power 𝑃hvac [0, 1] GW

agent-based controller, as described in [20]. The data centre consists
of two zones, each having an independent HVAC system. It consists of
an air economiser, a variable volume fan, a direct–indirect evaporative
cooler and a cooling coil (see Fig. 3). To differentiate between the two
zones, the west zone uses a direct expansion cooling coil, the east zone
a chilled water cooling coil. The target temperatures of the evaporative
coolers and the cooling coil are set to a common temperature, called
the setpoint temperature, which is measured after the cooling coil. The
air supply is adjusted by the variable volume fan.

The outdoor air enters through a damper and passes through evap-
orative coolers. The direct evaporative cooler humidifies the air, which
causes the evaporation of water molecules, thus reducing the air tem-
perature. The indirect evaporative cooler exchanges heat with a sec-
ondary air loop to cool the air down further without adding humidity
into the principal air loop. It then passes through a cooling coil (in
Fig. 3, it uses chilled water, connected to a cooling tower) to cool down
further if necessary. The setpoint temperature is measured after the
cooling coil. Then, the air passes through a variable volume air fan,
where the airflow rate is controlled by the agent. It controls the amount
of air entering the server room. As cold air enters, warm air exits and
leaves the building. Some of the exhaust air may re-enter the loop if
necessary.

5.2. Problem formulation

We formulate the problem in the form of a MDP, in terms of states
and actions and a reward function. We assume that the state and action
space take continuous values. We take actions every fifteen minutes,
and obtain a total of 35,040 steps for an episode (one year).

5.2.1. State space
We model the state space shown in Table 2, which includes the

outdoor air temperature, the indoor air temperature in both zones,
the power demand of the IT equipment and HVAC system. The power
demand of the IT equipment is due to the electrical demand of the
servers, which also depends on the indoor temperature. If it is colder in
the server room, the computers require less internal cooling to operate,
resulting in energy savings.

5.2.2. Action space
We model the action space shown in Table 3, which includes the

temperature setpoints and fan mass flow rates in both zones. Note that
the range of actions corresponds to the range of possible actions, which
is much broader than the range of ‘‘good" actions. The agent should
learn to manage the task using the feedback from the reward function.
Domain knowledge should be incorporated into the reward function
and not be used to define the desired range.

5.2.3. Reward function
The objective of the task is to minimise energy consumption, while

maintaining the indoor temperature within a pre-defined range. We
define the reward function as:

𝑟(𝑠, 𝑎) = 𝑅west + 𝑅east − 𝜆𝑃
(

𝑃it + 𝑃hvac
)

, (18)

where 𝑅𝑖 is a given reward when the temperature is within an accept-
able range in the zone 𝑖, representing either the western or eastern zone

Applied Energy 298 (2021) 117164M. Biemann et al.
Fig. 3. Simplified description of the air loop in the HVAC system of the east zone. The controllable parameters (belonging to the action space) are written in italics. The variables
of the state space are written in bold.
Table 3
Description of the action space.

Description Notation Range Unit

West zone setpoint temperature 𝑇 set
west [10, 40] ◦C

East zone setpoint temperature 𝑇 set
east [10, 40] ◦C

West zone fan mass flow rate �̇�west [1.75, 7.0] kg/s
East zone fan mass flow rate �̇�east [1.75, 7.0] kg/s

and 𝑃 corresponds to the power consumption. The minus sign is due
to the fact that we want to minimise energy consumption, not max-
imise it. The ASHRAE guidelines for power equipment in data centres,
recommend a range of between 18 ◦C and 27 ◦C [54], as undercooling
may increase the risk of battery failure, resulting in server failure. To
increase operational safety, we define a tighter range [𝑇min, 𝑇max] than
the safe operation range. Inspired by [20], we define the following
reward function:

𝑅𝑖 = exp
(

−𝜆1
(

𝑇𝑖 − 𝑇tgt
)2
)

− 𝜆2
(

[

𝑇min − 𝑇𝑖
]

+ +
[

𝑇𝑖 − 𝑇max
]

+

)

, (19)

where 𝑇tgt = (𝑇min+𝑇max)∕2 is the target temperature, i.e., the midpoint
of the interval and [𝑥]+ = max(𝑥, 0). The plot of this function is
presented in Fig. 4. The reward will be close to 1 if the temperature
is within the desired range, and will be small or negative when the
temperature is too cold or too hot. We use a Gaussian shape to motivate
the agent to maintain the temperature close to the centre, which is more
robust than a simple trapezoidal reward function. We add a trapezoid
penalty to regulate the learning when the temperatures are out of the
desired range, as the Gaussian tends too quickly to 0, which may result
7

in sparse rewards. The penalty allows the agent to distinguish between
very and moderately bad actions, which can help at the start of the
training. The weight 𝜆𝑃 is around 10−5, as the power consumption is
expected to be around 100 kW. This parameter addresses the trade-off
between temperature control and energy savings. We will evaluate the
importance of hyperparameters and their impact on performance. An
example of the hyperparameter settings is as follows: 𝑇min = 22 ◦C,
𝑇max = 25 ◦C, 𝜆1 = 0.2, 𝜆2 = 0.1 and 𝜆𝑃 = 10−5.

5.3. Exogenous input

The state space can be divided into a controllable component and
an exogenous component. The agent can only influence a subset of the
state space (e.g. indoor temperature and HVAC demand power), but
cannot influence the outdoor temperature. For the exogenous compo-
nent, we use external data to train the agent, such as weather data
provided with EnergyPlus.

We design our experiments to train and evaluate the algorithms in
different weather conditions. In this way, we can test whether the agent
manages to maintain the temperature under new weather conditions,
which is absolutely essential in a practical application. If we train
and evaluate on the same data set, it is unclear whether the agent
learns the task or overfits to the weather data. This could lead to an
agent that only manages to control the system under specific weather
conditions. To reduce the risk of overfitting, we alternate weather data
from various locations during training, even though it may yield a less
stable training process.

Applied Energy 298 (2021) 117164M. Biemann et al.
Fig. 4. Graph of the reward 𝑅𝑡 with the parameters 𝜆1 = 0.2 and 𝜆2 = 0.1. 𝜆1
corresponds to the precision of the Gaussian function, i.e how steep the peak is.
𝜆2 controls the slope of the trapezoid function. We give no trapezoid penalty for
temperatures between 22 and 25 ◦C.

5.4. Performance metrics

We use the following two metrics to evaluate the algorithm’s per-
formance: energy saving and thermal stability. Energy consumption
is measured by integrating the total electric demand power 𝑃tot =
𝑃it + 𝑃hvac of the whole data centre over a year. The average power
consumption of the data centre is around 100 kW, corresponding to an
annual energy consumption of about 3.2 TWh. In our experiments, we
report the average yearly power consumption.

To evaluate thermal stability, we assume that the temperature distri-
bution in the two zones approximately follows a Gaussian distribution.
Therefore, we use the inferred mean 𝜇 and standard deviation 𝜎 to
measure the agent’s ability to control the temperature in the given zone.
Ideally, 𝜇 is close to the target temperature of 23.5 ◦C and the standard
deviation 𝜎 as small as possible.

5.5. Choice of algorithms

The experiments will focus on evaluations of the following four
algorithms: SAC, TD3, TRPO and PPO. Other algorithms, such as DDPG
and A2C, are not selected as they were not able to learn the task suc-
cessfully in our case study. Note that TD3 and PPO are improved ver-
sions of DDPG and A2C respectively. The TRPO algorithm is included
for comparison with prior work [20].

5.6. Implementation details

We implement the algorithms using the Pytorch version of the
Stable Baselines framework [55].6 We use a discount factor of 𝛾 =
0.99 for all algorithms, meaning that the agent takes the actions that
maximise the expected reward over an effective time horizon of a
hundred steps (about one day in real-time). The states are normalised
before being fed into the neural network for numerical stability. The
actions 𝑎 sampled from 𝜋 are in the range of [−1, 1], which need to
be scaled back to the correct range for EnergyPlus to interpret them
correctly.

We use the neural network structure and hyperparameters recom-
mended by Stable Baselines [55], with only minor differences, e.g., us-
ing a larger horizon for the on-policy algorithms to improve stability
(the parameters used are listed in Appendix E, often corresponding to

6 The TRPO algorithm is implemented with the original version of
Baselines, as in [20].
8

the hyperparameters of the original implementations.). Although some
algorithms may obtain a greater reward by fine-tuning the hyperparam-
eters, we argue that the algorithms should learn the task without it.
Furthermore, when deployed in a physical building, a hyperparameter
search becomes impossible, so an algorithm needs to be able to learn
the task consistently even with suboptimal hyperparameters.

6. Experiments

We perform a series of experiments to demonstrate the robustness of
the algorithms with respect to changing weather dynamics and different
hyperparameters. For all experiments, we test all algorithms to see if
the same trends can be observed for all of them. Then, we take a closer
look at the results and discuss the observed trade-off between energy
consumption and indoor climate management.

6.1. Robustness to unseen weather conditions

We first evaluate the robustness of different actor-critic algorithms
using weather data as an exogenous input. We perform three exper-
iments, described in Table 4. The algorithms are trained for twenty
episodes using weather data from one location (Helsinki, Berlin or San
Francisco), where we use the same weather data for each episode.
Then the algorithm is evaluated at a different location, with weather
data from Copenhagen. This experiment aims to demonstrate that the
algorithms are robust to changes in temperature dynamics.

Table 4 shows the results. We can observe that the controller has
better results (in terms of energy savings) when trained with weather
data from Helsinki rather than San Francisco. Therefore, we conclude
that it is be preferable to use data from locations that have similar
weather conditions to the location where the controller would be
deployed. The results are promising, as all the tested algorithms work
reasonably well under unseen weather conditions, even when trained
with data from a different climate.

Motivated by the results of this first experiment, we perform a
second experiment, asking whether it helps to use weather files from
various locations to increase the robustness of the agent. Instead of
using the same weather information for each episode, we use episode
weather information from another location. For example, for the first
episode we use data from Oslo, for the second year from Bergen and
then continue as described in Table C.9. As these locations are in
northern Europe, we assume that they have similar weather conditions
to Copenhagen. We evaluate the algorithms using weather data from
Copenhagen as well.

Table 5 shows the results. We can observe that training using
various locations can significantly increase the performance of the off-
policy algorithms on the test environment, in terms of both energy
savings and thermal stability. The PPO algorithm manages to reduce
energy consumption, but at the cost of a worse indoor climate. This
can be explained by pointing out that changing the weather dynamics
each year reduces the stability of the learning process. In general, this
experiment shows that using weather data from various locations can
increase the agent’s understanding of the weather transitions and is,
therefore, better able to adapt to them. This validates experiments per-
formed by Moriyama et al. [20], who also showed that using multiple
weather locations during training can improve the performance of the
algorithms. We will take a closer look at the results of this experiment
in Section 6.3.

We compare the results to a baseline controller, commonly used
in the industry, that uses a model-based set point manager with a
zone thermostat cooling point at 23.0 ◦C. We refer the reader to Li
et al. [30] for more details. That controller, which aimed to maintain
the temperature precisely, is clearly better at keeping the temperature
within the desired range, but it uses internal simulation information to
compute the strategy, which the RL controllers do not have access to.
On the other hand, all RL algorithms reduce energy consumption by
at least 10%. Note that the baseline controller is more complex than a
simple rule-based controller.

Applied Energy 298 (2021) 117164M. Biemann et al.
Table 4
Influence of different weather data for training on the performance of the algorithms, tested on Copenhagen weather data.
The values are averaged over the whole year. The following hyperparameters were used: 𝑇min = 22 ◦C, 𝑇max = 25 ◦C,
𝜆1 = 0.2, 𝜆2 = 0.1 and 𝜆𝑃 = 10−5.
Algorithm Weather data Training location Test location

𝑃tot 𝜇 𝜎 𝑃tot 𝜇 𝜎

SAC Helsinki 102.2 23.2 1.2 102.8 23.2 1.2
TD3 Helsinki 96.4 23.0 1.6 95.2 23.2 1.4
PPO Helsinki 98.5 23.0 1.6 98.1 22.9 1.3
TRPO Helsinki 96.5 22.5 2.8 96.5 22.4 2.5

SAC Berlin 104.7 23.3 1.2 102.8 23.4 1.2
TD3 Berlin 109.7 22.6 2.1 105.6 23.0 1.9
PPO Berlin 107.8 22.6 1.6 105.7 22.6 1.3
TRPO Berlin 102.3 22.3 2.8 98.6 22.3 2.6

SAC San Francisco 112.1 23.2 1.1 106.5 23.3 1.3
TD3 San Francisco 107.5 23.0 1.7 105.8 23.5 2.5
PPO San Francisco 112.1 23.2 1.1 106.5 22.9 1.3
TRPO San Francisco 109.4 22.4 2.7 104.4 22.7 2.8
Table 5
Table comparing various reinforcement learning algorithms, trained using alternative weather data every year from locations in Northern Europe
(see Table C.9). We used the same hyperparameters as in Table 4. We compared the results to the model-based controller implemented into
EnergyPlus, which uses knowledge of the environment to compute the actions.
Algorithm Weather data Training location Test location Energy consumption

𝑃tot 𝜇 𝜎 𝑃tot 𝜇 𝜎

SAC Northern Europe 102.1 23.3 1.2 100.4 23.3 1.2 −13.0%
TD3 Northern Europe 95.6 22.8 1.5 93.4 22.7 1.2 −19.0%
PPO Northern Europe 95.9 22.0 2.6 94.2 22.0 2.5 −18.3%
TRPO Northern Europe 100.7 22.4 2.7 98.5 22.4 2.6 −14.6%
Baseline – – – – 115.3 23.7 0.4 –
6.2. Sensitivity of the reward function

We now perform a sensitivity analysis of the algorithms by tuning
the hyperparameters of the reward function, evaluating their perfor-
mance in Table 6. They include the temperature range used in the
definition of the reward function, i.e. [𝑇min, 𝑇max], the precision 𝜆1 of
the Gaussian, the slope of the trapezoid 𝜆2, and the weight of the
trade-off between temperature maintenance and energy savings 𝜆𝑃 .

By changing the hyperparameters, we can shape the range of ac-
ceptable temperatures. Notice that having a larger range [𝑇min, 𝑇max]
and a lower precision 𝜆1 can increase energy savings. On the other
hand, a high precision 𝜆1 and a tight range implies that the mean
temperature is generally closer to the target temperature of 23.5 ◦𝐶.
The value of the parameter 𝜆2 is not important, as it is only used to
guide the agent at the beginning of the training. We also noticed that
the on-policy algorithms (PPO and TRPO) are sensible to the choice
of the range (showing a lower mean with a larger range). In contrast,
SAC shows similar means, standard deviations and energy consumption
for all parameters, making it possibly the most robust algorithm. For
the other algorithms, the reward function needs to be shaped more
precisely to achieve the desired results.

The weight 𝜆𝑃 is used to find a balance between thermal stability
and energy savings. A high value means that energy savings are more
important, while a low value means that the agent is aimed at main-
taining the temperature precisely. The initial parameters performed
the best, probably because the other parameters were optimised for
the value of 𝜆𝑃 = 10−5. The dependency between the parameters is
complex, making it difficult to define the reward function so as to
obtain the desired results.

While the results are noisy, this at least shows that all algorithms are
able to learn the task under all tested hyperparameters. This implies,
that while better parameters can lead to better performance, the exact
choice is not essential. It is possible to train an algorithms without much
trial-and-error, which is important in practice.
9

6.3. Thermal stability and energy saving

Given the above results, it is interesting to make a further study on
temperature control and energy savings for the off-policy algorithms,
SAC and TD3. We first plot the temperature evolution over one year
and the distribution for both zones for the SAC algorithm in Figs. 5 and
6, respectively. The results in Fig. 5 indicate that SAC can successfully
keep the temperature within the desired range (between the two green
lines), with a relatively low variance.

According to our study in Section 6.1, TD3 has the same standard
deviation, and can save more energy than SAC, but has a lower mean.
This suggests that TD3 is better than SAC. However, if we explore its
temperature evolution (see Fig. 7) and temperature distribution (see
Fig. 8) further, we find that TD3 does not manage to maintain the
temperature as well as SAC. Note that the distributions in Fig. 8 are
not well-approximated by a Gaussian distribution. Using the standard
deviation 𝜎 to compare two distributions makes only sense if both are
Gaussian. As this is not the case here, it is an inappropriate measure
for evaluating thermal stability. From Fig. 7, we see that TD3 is worse
at maintaining temperature than SAC, when trained with equal data.
Nevertheless, it often saves more energy, as illustrated in Tables 4 and
6.

We therefore conclude that there is a trade-off between thermal
stability and energy savings. Depending on different real-world ap-
plications, some fields can use more energy to achieve more precise
temperature control, such as the biochemistry field, while others could
relax it, but prioritise energy saving, such as residential buildings. Data
centres and industrial buildings are in between, where a lower energy
consumption significantly reduces costs, but the temperature needs to
be maintained for safe operation. As noted in Section 6.2, we can
partially address this trade-off by adapting the hyperparameters of the
reward function to shape the desired behaviour to the case study, such
as the range [𝑇min, 𝑇max] or the weight 𝜆𝑃 . In Section 6.4, we see that
part of this trade-off may be due to the TD3 algorithm not having
yet converged to a stable policy. We will discuss in Section 6.6 how

potentially to improve both energy savings and thermal stability.

Applied Energy 298 (2021) 117164M. Biemann et al.

e
i

Table 6
Influence of the hyperparameters of the reward function on the performance of the algorithms, trained on Northern Europe
data and tested on Copenhagen weather data.
Algorithm Range Hyperparameters Test set

𝑇min 𝑇max 𝜆1 𝜆2 𝜆𝑃 𝑃tot 𝜇 𝜎

SAC 23.0 24.0 0.2 0.1 10−5 103.2 23.2 1.2
TD3 23.0 24.0 0.2 0.1 10−5 92.9 23.2 1.3
PPO 23.0 24.0 0.2 0.1 10−5 106.3 23.3 1.2
TRPO 23.0 24.0 0.2 0.1 10−5 105.1 23.4 1.1

SAC 23.0 24.0 0.5 0.1 10−5 100.8 23.2 1.2
TD3 23.0 24.0 0.5 0.1 10−5 97.5 23.3 1.3
PPO 23.0 24.0 0.5 0.1 10−5 105.1 23.4 1.1
TRPO 23.0 24.0 0.5 0.1 10−5 100.8 22.3 2.7

SAC 23.0 24.0 0.5 0.5 10−5 100.8 23.2 1.2
TD3 23.0 24.0 0.5 0.5 10−5 101.2 22.9 1.7
PPO 23.0 24.0 0.5 0.5 10−5 105.1 23.4 1.1
TRPO 23.0 24.0 0.5 0.5 10−5 102.4 22.4 2.7

SAC 22.5 24.5 0.5 0.1 10−5 104.8 23.3 1.3
TD3 22.5 24.5 0.5 0.1 10−5 99.2 23.1 1.4
PPO 22.5 24.5 0.5 0.1 10−5 102.1 23.4 1.5
TRPO 22.5 24.5 0.5 0.1 10−5 98.4 22.3 2.7

SAC 22.0 25.0 0.5 0.1 10−5 102.5 23.2 1.2
TD3 22.0 25.0 0.5 0.1 10−5 103.7 23.3 1.7
PPO 22.0 25.0 0.5 0.1 10−5 99.4 22.9 1.3
TRPO 22.0 25.0 0.5 0.1 10−5 104.7 22.7 1.4

SAC 22.0 25.0 0.2 0.1 8 ⋅ 10−6 104.3 23.1 1.2
TD3 22.0 25.0 0.2 0.1 8 ⋅ 10−6 100.9 23.1 1.6
PPO 22.0 25.0 0.2 0.1 8 ⋅ 10−6 102.8 21.7 2.1
TRPO 22.0 25.0 0.2 0.1 8 ⋅ 10−6 98.6 22.4 2.4

SAC 22.0 25.0 0.2 0.1 1.2 ⋅ 10−5 103.4 23.3 1.2
TD3 22.0 25.0 0.2 0.1 1.2 ⋅ 10−5 96.6 23.0 1.3
PPO 22.0 25.0 0.2 0.1 1.2 ⋅ 10−5 101.8 22.0 1.9
TRPO 22.0 25.0 0.2 0.1 1.2 ⋅ 10−5 97.6 22.2 2.7

SAC 22.0 25.0 0.2 0.1 10−5 100.4 23.3 1.2
TD3 22.0 25.0 0.2 0.1 10−5 93.4 22.7 1.2
PPO 22.0 25.0 0.2 0.1 10−5 94.2 22.0 2.5
TRPO 22.0 25.0 0.2 0.1 10−5 98.5 22.4 2.6
Fig. 5. Evolution of temperatures over a year for the SAC algorithm, tested with Copenhagen weather data. The values correspond to the moving average over six hours.
6.4. Analysis of data efficiency

We now evaluate the impact on control performance by increasing
the training sample size from 20 to 60 episodes.7 We first compare the
off-policy algorithms, SAC and TD3. The result of SAC with 60 episodes
does not show much difference with the training size of 20 episodes

7 For the 21st episode, we reuse the same weather data as for the first
pisode and continue alternating the locations in the same order, as described
n Table C.9.
10
(see Figs. 5 and 6), thus we do not plot the results here. However,
the TD3 results are becoming more similar to the results of SAC (see
Fig. 9), where temperatures are almost within the desired range, but
with higher average power consumption than before (103.2 kW). In
addition, the temperature distribution is also closer to a Gaussian dis-
tribution (see Fig. 10), although the distributions still show differences
between the two zones. This difference in the distribution indicates
another property of the algorithm: the stability of the learning process.
SAC obtains similar results for both zones (see Fig. 6), whereas TD3
obtains significantly different results for both zones (see Figs. 8 and

10), even though the zones are very similar. Therefore, in comparison,

Applied Energy 298 (2021) 117164M. Biemann et al.

n
o

e
G
t
t
a
i
i
p

Fig. 6. Temperature distributions in both zones over a year. The distribution follows a Gaussian distribution when trained with SAC.
Fig. 7. Evolution of temperatures over a year for the TD3 algorithm, tested on Copenhagen weather data. The values correspond to the moving average over six hours. The
training comprised 20 episodes. The temperature control is not yet satisfactory.
Fig. 8. Temperature distributions in both zones over a year. The distribution for TD3 is not well approximated by a Gaussian distribution. The training comprised 20 episodes.
t
w

ot only can the SAC algorithm achieve faster convergence (in terms
f episodes), but the training process is more reliable.

The results can be explained with reference to the theoretical prop-
rties of the algorithms. The policy of the SAC algorithm follows a
aussian distribution, explaining the shape of the results in Fig. 6, as

he setpoint temperature is closely correlated with the indoor tempera-
ure. In contrast, the TD3 policy is a deterministic function, specifying
given action. Such policies are biased towards taking similar actions

n similar states, explaining the sharp peaks in Fig. 8. This behaviour
s often desirable in deployment, but it makes training difficult in
ractice. At the beginning of the training, it is important to explore the
11

d

environment to be able to distinguish between good and bad states.
With stochastic policies, exploration is handled naturally, while deter-
ministic policies have to rely on the stochasticity of the environment
to end up in different states.8 In SAC, the agent needs to reduce the 𝑄-
values of bad state–action pairs significantly, so that they do not happen

8 In deterministic environments, it is common to add noise to the actions
o encourage exploration. In our experiments, it performed significantly worse
ith the noise. This may be due to the fact that we did not reduce the noise
uring the course of training.

Applied Energy 298 (2021) 117164M. Biemann et al.

f

Fig. 9. Evolution of temperatures over a year for the TD3 algorithm, tested on Copenhagen weather data. The values correspond to the moving average for six hours. We trained
or 60 episodes, instead of 20. We obtain a policy that maintains the temperature better (but uses more energy) compared to the less trained version.
Fig. 10. Temperature distributions in both zones over a year. We trained for 60 episodes instead of the usual 20. The distribution for TD3 became closer to a Gaussian.
frequently anymore, allowing the agent to identify quickly which ac-
tions to take. For TD3, if an action is bad, it takes time before the agent
realises it and adapts the network’s weights in order to take different
actions in such states. Furthermore, entropy regularisation makes the
policy easier to optimise with gradient descent, which implies a more
stable learning process than for deterministic policies [56]. With more
training episodes, the policy becomes more stable and can outperform
SAC, but this requires a large amount of data for training, e.g., covering
nearly sixty years in this paper. However, this is an unacceptable
amount of data for many real-world applications. In contrast, SAC
requires much less data, less than ten years and shows clear signs of
learning during the first year (see Fig. 14).

We perform the same experiment for the on-policy algorithms (PPO
and TRPO). PPO performs similarly to TD3, achieving similar thermal
stability after 60 training episodes (see Fig. 11), although its results
are clearly worse than TD3 for previous episodes. PPO also obtains a
Gaussian temperature distribution (see Fig. 12). TRPO shows significant
improvements in maintaining the temperature and a remarkably stable
learning process, but its results are still worse than for the other
three algorithms. The on-policy algorithms are more stable than TD3,
which can be subject to a large performance drop, as seen in Fig. 13.
This figure also shows how quickly the SAC is able to learn the task
compared to the other algorithms. SAC is both stable and data-efficient,
making it a promising algorithm to consider for future work.

6.5. Research implications

Our experiments show consistently that all applied continuous con-
12

trol RL algorithms are able to manage the HVAC systems, while keeping
the temperature of the data centre within the desired range. The energy
consumption is reduced by up to 15% compared to the model-based
EnergyPlus controller. The SAC algorithm is even able to reach these
results after fewer than 10 episodes. The amount of data required
by SAC to stabilise the indoor temperature is up to ten times less
than for the other algorithms. This might be ascribable to the use of
experience replay and the learning stability of entropy regularisation.
Due to this and the good capability of handling domain shifts, SAC
seems to be predestined for real-world deployment despite the slightly
higher energy consumption.

In contrast, the on-policy algorithms show a stable training process,
are fast in terms of wall-clock time and can obtain excellent policies, as
shown in Moriyama et al. [20] (trained with 360 episodes). However,
the amount of data required by these algorithms before obtaining a
good policy is inadmissible, as they cannot reuse past experience. While
also using experience replay, the TD3 algorithm needs significantly
more data to be able to maintain the temperature as well as SAC. In
the RL literature, the SAC and TD3 perform similarly, but in our case
study, SAC performed significantly better. This is possibly explained by
the fact that our environment is noisy, whereas most environments in
the RL literature [12] are deterministic. It is possible that stochastic
policies are able to handle noisy environments better.

With regard to robustness and generalisation, we demonstrate that
all algorithms are able to learn the task with different hyperparameters
in the reward function. This shows improvements over commonly
applied algorithms, such as DDPG, that have been applied successfully
in other tasks (as in [31,32]), but had to rely on smaller networks

than the original architecture [28] to learn the task successfully. The

Applied Energy 298 (2021) 117164M. Biemann et al.
Fig. 11. Evolution of temperatures over a year for the PPO algorithm, tested on Copenhagen weather data. The values correspond to a moving average over 6 h and trained for
60 episodes. The algorithm is eventually able to maintain temperature, but requires far more data than SAC.
Fig. 12. Temperature distributions in both zones over a year. The distribution for PPO also follows a Gaussian distribution. We trained for 60 episodes, instead of the usual 20.
Fig. 13. Training process of the RL algorithms. We show the reward 𝑟(𝑠, 𝑎) received per timestep, averaged over the whole episode. SAC reaches a high reward very quickly,
showing its data-efficiency. Ultimately, all algorithms have a similar performance.
benchmarked algorithms work without having to run a hyperparameter
search. This is again important with a real-world deployment in mind,
because we cannot restart the training to change the hyperparameters.
Furthermore, our results confirm that all algorithms generalise to un-
seen weather dynamics, which is essential for real-world applications,
as the weather during deployment will be different than that during
13
training. This confirms results from the literature that showed similar
results for other algorithms, such as tabular 𝑄-learning [37], DQN [36]
and DDPG [32].

In our reward function and analysis, we focused on maintaining
indoor temperatures in order to reduce energy consumption. A more
involved case-study would also have to consider other parameters,

Applied Energy 298 (2021) 117164M. Biemann et al.

c
a
w
a
d
t
d
e
s
a

e
a
a
a
c
o
i
c
i
t
A
b
e
t
e
d
i

f
I
p

e
S

Fig. 14. Evolution of the inside temperatures during the first year of training for SAC. While the policy is inadmissible at the beginning of the training (this issue can potentially
be solved using imitation learning [57]), it clearly shows improvements and ends up with an almost acceptable policy at the end of the year.
such as humidity, air quality and more (they are also monitored in
the simulation, but have not been used by the algorithm). To control
these effectively, we would need to incorporate these as well into the
reward function. This can present additional challenges in designing
the reward function. Even when controlling few parameters, we might
want to modify the reward function to punish other undesirable be-
haviour.9 It is important to consider all exogenous parameters that
an influence the indoor temperature (such as insulation or human
ctivities) and whether they can be effectively measured. Furthermore,
e might want to react to other constraints such as energy prices,
vailable renewable energy, and more. As the algorithms support multi-
imensional state and action spaces, it is straightforward to apply
he same algorithms in such applications. However, this leads to ad-
itional practical challenges, such as simulating physically realistic
nvironments, monitoring the desired parameters that define the state
pace and especially defining a reward function that addresses these
dditional trade-offs.

Moreover, it is important to select appropriate metrics for the
valuation of thermal management. In this paper, we use the mean
nd standard deviation of the temperature distributions. Comparing
lgorithms using these metrics only makes sense if the distributions
re all Gaussian. However, as we saw for TD3, this is not always the
ase. This can result in making wrong conclusions about the qualities
f the algorithms.10 A statistical analysis of the results may be required
n order to evaluate the algorithms properly. Other metrics to measure
omfort in residential buildings, such as predictive mean value (used
n [29]) or predicted percentage dissatisfied (used in [21]) are subjec-
ive and are computed with parameters that are not easily tractable.
verage temperature violation, used in [32] is unable to distinguish
etween good policies. Another commonly used metric is simply the
xpected reward 𝐽 (𝜋). This could seem natural, as it corresponds to
he objective the algorithms optimise, but it has little meaning for
ngineers. While the choice of an appropriate metric is case-study
ependent, we argue that this aspect should be considered carefully
n future.

9 In our case study, we did not include the airflow rate in the reward
unction, which may result in undesirably high airflow or noise in the building.
n addition, it would certainly be of benefit to try to address fluctuation by
enalising actions that differ greatly from previous actions.
10 For instance, in Table 4, TD3 appears to be better than SAC, due to better
nergy consumption and similar standard deviation. However, as discussed in
14

ection 6.3, this may not be the case.
6.6. Future directions

We discussed the trade-off between energy consumption and ther-
mal stability. It is difficult to assess this trade-off quantitatively, as it
is difficult to measure thermal stability. It is certainly impossible to
reduce the trade-off completely, as an algorithm that was required to
control the temperature precisely would have less freedom to operate
than a policy with laxer requirements that could reduce energy con-
sumption more. However, we believe that the results can be improved
with respect to both metrics if we use better algorithms and neural
network architectures that are able to take account of temporal de-
pendencies. A possible direction for improving model-free methods is
the use of distributional RL [58], which would improve estimates of
the expected reward, leading to additional safety. This has shown to
help improve the performance in real-world applications in complex,
stochastic environments [59]. Another important direction is using
networks that take not only the current state as input, but a sequence
of previous states. This can give the agent important additional infor-
mation, which can help its decisions. For example, it can determine if
the temperatures have been increasing in the previous hours and take
actions accordingly. For instance, convolutional neural networks (CNN)
and recurrent neural networks (RNN) can be used for this purpose.
However, it is challenging to apply RNNs to off-policy algorithms,
because of memory issues.

Testing the algorithms in other environments is necessary in or-
der to examine further the generalisation properties of the studied
algorithms [10]. It is also essential to deploy such controllers into
real-world environments to see how the algorithms handle additional
challenges, as well as the domain shift between simulation and reality.
Furthermore, we can reduce cold starts using imitation learning [57],
where we use existing data to initialise the networks and continue
the training from there. It is important to test more model-based
approaches as well. This can be done by using the building models that
have been developed for MPC applications, where the agent predicts
the trajectories using that model, while learning the policy from the
data. To make model-based RL more scalable, we can also learn the
model directly using the training data (in addition to the actor and
critic networks). This has been done notably in [8,9] and could be
used to increase data efficiency even further. These methods should be
combined in future work to reduce the gap in training RL controllers
directly in the real world, at least in an experimental environment.
The current method, namely to train the controller first in a simulated
environment before deploying it into the real-world is not ideal, as one
of the main motivations in using RL methods is to be able to manage

HVAC systems efficiently without designing these simulations.

Applied Energy 298 (2021) 117164M. Biemann et al.

u
P
a

D

c
i

We believe that this evaluation study will encourage the further
democratisation of algorithms for the continuous control of HVAC
systems. It should be noted that many of the major challenges posed
by the RL for HVAC control are not unique to this setting. Efficiency,
robustness, safety, scalability, interpretability, reward function design,
and transfer from simulation to real-world deployment have also been
the subject of significant research efforts in other artificial intelligence-
based fields, such as robotics. We therefore believe that the smart
building sector should closely monitor progress in the related fields,
as it can greatly benefit from it. We believe that robustness and data
efficiency are important topics that deserve further investigation.

7. Conclusion

Reinforcement Learning based strategies are important for smart
building systems, due to their ability to learn from experience in
stochastic environments and their scalability. Realistic case studies re-
quire controllers that are able to manage multiple parameters (temper-
ature, humidity and air quality) in multiple zones. For these problems,
the commonly used value-based methods are not straightforward to
apply. Therefore, we discussed the theoretical background needed to
define algorithms that are able to handle such problems. We evaluated
the algorithms on a simulated data centre case study, using EnergyPlus.
The objective was to reduce energy consumption, while keeping indoor
temperature within the pre-defined range. We addressed technical
issues regarding the real-world deployment of RL-based controllers,
including data efficiency and robustness to different weather conditions
and reward functions. We analysed the trade-off between energy con-
sumption and thermal stability in this case study. Although a growing
number of RL-based applications have emerged for building manage-
ment, only a few studies have aimed to compare different RL algorithms
with each other and discuss more technical questions. This paper fills
this gap, helping users understand better the properties of different
algorithms for indoor climate and energy management, and facilitating
the selection of RL algorithms for specific applications.

The experiments showed that all algorithms are able to maintain
indoor temperatures, while reducing energy consumption with respect
to model-based controllers by more than 13%. The algorithms can learn
the task under different hyperparameters and show robustness when
using unseen weather conditions. This is promising with regard to the
scalability and generalisation of RL-based controllers. The temperature
distributions of all algorithms became more similar in the end, except
that Soft Actor Critic can obtain these consistently with up to ten times
less data and shows clear improvements the first year. Its yearly average
indoor temperature lies at 23.3 ◦C, close to the target temperature of
23.5 ◦C with a low standard deviation of 1.2 ◦C. Due to its high data
efficiency and stability, we believe that this algorithm can reduce the
gap in training RL controllers directly in the real world.

CRediT authorship contribution statement

Marco Biemann: Conceptualization, Methodology, Investigation
and resources, Writing - original draft, Writing - review & editing.
Fabian Scheller: Conceptualization, Writing - review & editing. Xi-
feng Liu: Conceptualization, Writing - review & editing, Supervision,
roject administration, Funding acquisition. Lizhen Huang: Conceptu-
lization, Writing - review & editing, Supervision, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
15
Table A.7
Abbreviations.
Abbreviation Meaning

(D)RL (Deep) Reinforcement Learning
HVAC Heating, Ventilation, Air Conditioning
BEM Building Energy Management
PID Proportional, Integral, Derivative
MPC Model Predictive Control
ML Machine Learning
MDP Markov Decision Process
DQN [22] Deep 𝑄-network
DDPG [28] Deep Deterministic Policy Gradient
A2C/A3C [45] (Asynchronous) Advantage Actor Critic
TD3 [48] Twin Delayed DDPG
SAC [49] Soft Actor Critic
TRPO [46] Trust Region Policy Optimisation
PPO [47] Proximal Policy Optimisation
GAE [60] Generalised Advantage Estimation

Table B.8
Notations.

Notation Meaning

𝑠 State
𝑎 Action
𝑝(𝑠′ ∣ 𝑠, 𝑎) State-transition probability distribution
𝜌(𝑠) Initial state probability distribution
𝑟(𝑠, 𝑎) Reward function
𝜏 Trajectory (sequence of state–action pairs)
𝜋(𝑎 ∣ 𝑠) Stochastic policy
𝜇(𝑠) Deterministic policy
𝛾 Discount factor
𝛼 Temperature parameter (in maximum entropy RL)
𝐽 (𝜋) Optimisation objective (total expected reward)
𝑉𝜋 (𝑠) (State-) Value function
𝑄𝜋 (𝑠, 𝑎) Action-value function
𝐴𝜋 (𝑠, 𝑎) Advantage function
𝜃 Weights of the actor
𝑤 Weights of the critic
𝐿(𝑤) , 𝐿(𝜃) Loss function
𝑦(𝑠, 𝑎, 𝑠′) Bellman residual
𝜆 Trace-decay parameter (in GAE)
𝐷𝐾𝐿 Kullback–Leibler divergence
 Gaussian (normal) distribution
 (𝐷) Uniform distribution, sampled from the replay

buffer
𝑃it Power consumption of the IT equipment
𝑃hvac Power consumption of the HVAC system
𝑃tot 𝑃tot = 𝑃it + 𝑃hvac total power consumption
𝜇 Mean
𝜎 Standard deviation

Acknowledgements

This research was supported by the Nordic5Tech PhD fellowship,
Denmark, the Reinforcing the Health Data Infrastructure in Mobil-
ity and Assurance through Data Democratization project (288856)
funded by the Norwegian Research Council, the Heat4.0 project (8090-
00046A), and the Flexible Energy Denmark project (8090-00069B)
funded by Innovation Fund Denmark.

Appendix A. Abbreviations

See Table A.7.

Appendix B. Nomenclature

See Table B.8.

Appendix C. Weather data

See Table C.9.

Applied Energy 298 (2021) 117164M. Biemann et al.

t

w

𝑦

i

D

r
i
r
a

w

𝐹

w

𝑔

t
w
d

A

E

e
i
t
t
p
o
p
T

E

l
o
t
r
d
i
i

E

p
h
e
t

Table C.9
Weather data from towns located in northern Europe. The files are
available at https://www.energyplus.net/weather.
Years 1–10 Years 11–20

Oslo Hamburg
Bergen Düssledorf
Stockholm Bremen
Ostersund Aberdeen
Karlstad Saint Petersburg
Kiruna Dundee
G’́oteborg Amsterdam
Tampere Groningen
Helsinki Gdansk
Berlin Szczecin

Appendix D. On-policy methods

D.0.1. Critic network
On-policy methods generally aim to learn the value function, in-

stead of the 𝑄-function. This allows estimates of the advantage func-
ion 𝐴𝜋 (𝑠, 𝑎) to be obtained, which are needed in the policy up-

dates. Using Generalised Advantage Estimation (GAE) [60], we can
estimate �̂�(𝑠𝑡, 𝑎𝑡) ≈ 𝐴𝜋 (𝑠𝑡, 𝑎𝑡). To do this, we generate trajectories
(𝑠1, 𝑎1,… , 𝑠𝑇 , 𝑎𝑇) by running the policy 𝜋𝜃 in the environment, and
approximate the value-function 𝑉𝜋 (𝑠) using a neural network 𝑉𝑤(𝑠),
similarly to what we did for the 𝑄-function in the off-policy methods.
Using current estimates of 𝑉𝑤(𝑠), we can estimate the advantage:

�̂�
(

𝑠𝑡, 𝑎𝑡
)

=
𝑇−𝑡−1
∑

𝑙=0
(𝜆𝛾)𝑙𝛿𝑡+𝑙 , (D.1)

where 𝜆 ∈ [0, 1] and 𝛿𝑙 = 𝑟(𝑠𝑙 , 𝑎𝑙) + 𝛾𝑉𝑤(𝑠𝑙+1) − 𝑉𝑤(𝑠𝑙). The critic aims to
minimise the mean squared error, 𝐿𝑉 (𝑤) = 1

2E𝜏∼𝑝𝜋 [(𝑉𝑤(𝑠𝑡) − 𝑦(𝑠𝑡, 𝑎𝑡))2],
here

(

𝑠𝑡, 𝑎𝑡
)

=
𝑇−𝑡−1
∑

𝑙=0
𝛾 𝑙𝑟

(

𝑠𝑡+𝑙 , 𝑎𝑡+𝑙
)

+ 𝛾𝑇−𝑡𝑉𝑤old

(

𝑠𝑇
)

(D.2)

s the multi-step Bellman residual (see [39]).

.0.2. Actor network
Although the policy gradient theorem is an important theoretical

esult, the gradient estimates suffer from high variance. This makes it
mpractical for a learning algorithm, due to noisy updates. Theoretical
esults [46,61] suggest maximising another objective that is easier to
nalyse, which has the same gradient as 𝐽 (𝜋) when evaluated at �̃� = 𝜋.

The idea is to maximise the surrogate objective

𝐿𝜋 (�̃�) =
1

1 − 𝛾
E𝑠∼𝜌𝜋 ,𝑎∼𝜋

[

�̃�(𝑎 ∣ 𝑠)
𝜋(𝑎 ∣ 𝑠)

𝐴𝜋 (𝑠, 𝑎)
]

(D.3)

under some trust region constraints. For example, the TRPO [46] algo-
rithm requires that the expected Kullback–Leibler divergence between
the old and new policy is bounded by a constant 𝛿. More precisely, it
solves the following convex optimisation problem:

𝜃new = max
𝜃

∇𝐿𝜃old (𝜃)
𝑇 (𝜃 − 𝜃old), (D.4)

subject to:
1
2
(𝜃 − 𝜃old)𝑇𝐹 (𝜃, 𝜃old)(𝜃 − 𝜃old) ≤ 𝛿, (D.5)

here

𝑖𝑗 (𝜃, 𝜃old) =
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
E𝑠∼𝜌

𝜋𝜃old [𝐷𝐾𝐿(𝜋𝜃(⋅ ∣ 𝑠), 𝜋𝜃old (⋅ ∣ 𝑠))] (D.6)

is the Fisher information matrix and where 𝐿𝜃old (𝜃) = 𝐿𝜋𝜃old
(𝜋𝜃) cor-

responds to the surrogate loss of Eq. (D.3). This ensures that the data
16

collected using the old policy is meaningful to the new policy.
Table E.10
SAC hyperparameters.
Critic networks 9 → 256 → 256 → 1
Actor network 5 → 256 → 256 → (2 × 4)
Activation function Relu
Optimiser Adam
Learning rate 3 ⋅ 10−4

Batch size 256
Discount factor (𝛾) 0.99
Polyak averaging (𝜏) 5 ⋅ 10−3

Buffer size 106

Temperature (𝛼) Automatically adjusted

Instead of solving an optimisation problem, the PPO algorithm [47]
requires the importance sampling ratio to be close to 1:
𝜋𝜃(𝑎 ∣ 𝑠)
𝜋𝜃𝑜𝑙𝑑 (𝑎 ∣ 𝑠)

∈ [1 − 𝜀, 1 + 𝜀]. (D.7)

To ensure this constraint, the PPO algorithm maximises the following
objective:

𝐿𝜋 (𝜃) = E𝑠∼𝜌
𝜋𝜃old ,𝑎∼𝜋𝜃old

[

min

(

𝜋𝜃(𝑎 ∣ 𝑠)
𝜋𝜃old (𝑎 ∣ 𝑠)

�̂�(𝑠, 𝑎), 𝑔(𝜀, �̂�(𝑠, 𝑎))

)]

,

(D.8)

here

(𝜀, 𝐴) =
{

(1 + 𝜀)𝐴 if 𝐴 ≥ 0,
(1 − 𝜀)𝐴 if 𝐴 < 0.

(D.9)

Intuitively, this means increasing the probabilities of actions leading
o a higher reward and decreasing the probabilities of bad actions,
hile keeping updates small enough to avoid causing an accidental
rop in performance.

ppendix E. Hyperparameters

.1. SAC algorithm

Both networks are feed-forward neural networks, where between
ach layer, we use the Relu activation function. The input of the critics
s the state–action pair (𝑠, 𝑎) and calculates 𝑄𝑤(𝑠, 𝑎). The actor uses
he state and calculates the latent variables 𝜇 and 𝜎, which are used
o describe the Gaussian distribution. We also adjust the temperature
arameter 𝛼 automatically, as described in [53]. We use the same
ptimiser for the networks (two critics, one actor) and the temperature
arameter. Note that the hyperparameters are identical to [53,55] (see
able E.10).

.2. TD3 algorithm

Both networks are feed-forward networks, where between each
ayer, we use the Relu activation function. The architectures are anal-
gous to SAC with the difference that the actor directly calculates
he action. The policy uses delayed updates, as described in [48] for
educed training time. Contrary to the recommended parameters, we
id not use exploration noise, as it reduces the stability of the train-
ng process. The other hyperparameters are identical to the original
mplementation [48] (see Table E.11).

.3. PPO algorithm

The networks are similar to SAC, except smaller. We modified the
arameters of the Stable Baselines [55] implementation, by using a
orizon of 4096 instead of 2048 and updating the networks for 15
pochs instead of 10. The number of epochs tells how often we reuse
he sampled data in order to update the networks, before collecting

Applied Energy 298 (2021) 117164M. Biemann et al.
Table E.11
TD3 hyperparameters.
Critic networks 9 → 400 → 300 → 1
Actor network 5 → 400 → 300 → 4
Activation function Relu
Optimiser Adam
Learning rate 10−3

Batch size 100
Discount factor (𝛾) 0.99
Polyak averaging (𝜏) 5 ⋅ 10−3

Buffer size 106

Target policy noise clip ((0, 0.2), −0.5, 0.5)
Exploration noise None
Delayed policy update 2

Table E.12
PPO hyperparameters.
Critic network 5 → 64 → 64 → 1
Actor network 5 → 64 → 64 → (2 × 4)
Activation function Tanh
Optimiser Adam
Learning rate 3 ⋅ 10−4

Batch size 64
Discount factor (𝛾) 0.99
Trace-decay parameter (𝜆) 0.95
Horizon (𝑇) 4096
Number of epochs 15
Clipping range (𝜀) 0.2
Global gradient clipping 0.5
Entropy regularisation None
Target KL early stopping None

Table E.13
TRPO hyperparameters.
Critic network 5 → 32 → 32 → 1
Actor network 5 → 32 → 32 → (2 × 4)
Activation function Tanh
Value function optimiser Adam
Learning rate 10−3

Discount factor (𝛾) 0.99
Trace-decay parameter (𝜆) 0.98
Horizon (𝑇) 16,348
Maximum KL-divergence 0.01
Conjugate gradient iterations 10
Conjugate gradient dumping 0.01
Number of epochs (critic updates) 5
Entropy regularisation None

new trajectories. The gradient clipping means they minimise the Huber
loss, instead of the mean squared error. Other optimisations, such as
entropy regularisation (as in SAC) and early stopping were not used
(see Table E.12).

E.4. TRPO algorithm

We use the same hyperparameters as in [20]. They are identical to
the Baselines implementation with the exception of the horizon, which
is larger in order to increase stability in the learning process. The neural
networks are similar to PPO, but smaller. The value function is learned
the same way as for PPO. However, the policy weights are updated
differently. TRPO solves each iteration a convex optimisation problem.
This involves solving a linear equation with the conjugate gradient
algorithm. Readers can refer to [46] for more details (see Table E.13).

References

[1] Niu Z, Wu J, Liu X, Huang L, Nielsen PS. Understanding energy de-
mand behaviors through spatio-temporal smart meter data analysis. Energy
2021;226:120493. https://doi.org/10.1016/j.energy.2021.120493.
17
[2] Huang L, Bohne RA, Lohne J. Shelter and residential building energy consump-
tion within the 450 ppm CO2eq constraints in different climate zones. Energy
2015;90:965–79. https://doi.org/10.1016/j.energy.2015.07.129.

[3] IEA I. World energy outlook. Paris: International Energy Agency; 2008.
[4] Afram A, Janabi-Sharifi F. Theory and applications of HVAC control systems–

a review of model predictive control (MPC). Build Environ 2014;72:343–55.
https://doi.org/10.1016/j.buildenv.2013.11.016.

[5] Perera A, Kamalaruban P. Applications of reinforcement learning in energy
systems. Renew Sustain Energy Rev 2021;137:110618. https://doi.org/10.1016/
j.rser.2020.110618.

[6] Wang Z, Hong T. Reinforcement learning for building controls: The opportuni-
ties and challenges. Appl Energy 2020;269:115036. https://doi.org/10.1016/j.
apenergy.2020.115036.

[7] Liu S, Henze GP. Experimental analysis of simulated reinforcement learning
control for active and passive building thermal storage inventory: Part 2:
Results and analysis. Energy Build 2006;38(2):148–61. https://doi.org/10.1016/
j.enbuild.2005.06.002.

[8] Zhang C, Kuppannagari SR, Kannan R, Prasanna VK. Building HVAC scheduling
using reinforcement learning via neural network based model approximation.
In: Proceedings of the 6th ACM international conference on systems for energy-
efficient buildings, cities, and transportation. 2019, p. 287–96. https://doi.org/
10.1145/3360322.3360861.

[9] Ding X, Du W, Cerpa AE. MB2C: Model-based deep reinforcement learning
for multi-zone building control. In: Proceedings of the 7th ACM international
conference on systems for energy-efficient buildings, cities, and transportation.
2020, p. 50–9. https://doi.org/10.1145/3408308.3427986.

[10] Wölfle D, Vishwanath A, Schmeck H. A guide for the design of benchmark
environments for building energy optimization. In: Proceedings of the 7th ACM
international conference on systems for energy-efficient buildings, cities, and
transportation. 2020, p. 220–9. https://doi.org/10.1145/3408308.3427614.

[11] Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P. Benchmarking deep
reinforcement learning for continuous control. In: International conference on
machine learning, 2016. p. 1329–38.

[12] Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J,
Zaremba W. Openai gym. 2016, arXiv:1606.01540.

[13] Nadjahi C, Louahlia H, Lemasson S. A review of thermal management and
innovative cooling strategies for data center. Sustain. Comput.: Inform Syst.
2018;19:14–28. https://doi.org/10.1016/j.suscom.2018.05.002.

[14] Mozer MC. The neural network house: An environment hat adapts to its
inhabitants. 1998.

[15] Vázquez-Canteli JR, Nagy Z. Reinforcement learning for demand response: A
review of algorithms and modeling techniques. Appl Energy 2019;235:1072–89.
https://doi.org/10.1016/j.apenergy.2018.11.002.

[16] Han M, May R, Zhang X, Wang X, Pan S, Yan D, Jin Y, Xu L. A review
of reinforcement learning methodologies for controlling occupant comfort in
buildings. Sustainable Cities Soc 2019;51:101748. https://doi.org/10.1016/j.scs.
2019.101748.

[17] Henze GP, Schoenmann J. Evaluation of reinforcement learning control for
thermal energy storage systems. HVAC&R Res. 2003;9(3):259–75. https://doi.
org/10.1080/10789669.2003.10391069.

[18] Liu S, Henze GP. Evaluation of reinforcement learning for optimal control of
building active and passive thermal storage inventory. In: Solar energy. ASMEDC;
2005, https://doi.org/10.1115/isec2005-76085.

[19] Liu S, Henze GP. Experimental analysis of simulated reinforcement learning con-
trol for active and passive building thermal storage inventory: Part 1. Theoretical
foundation. Energy Build 2006;38(2):142–7. https://doi.org/10.1016/j.enbuild.
2005.06.002.

[20] Moriyama T, De Magistris G, Tatsubori M, Pham T-H, Munawar A, Tachibana R.
Reinforcement learning testbed for power-consumption optimization. In: Methods
and applications for modeling and simulation of complex systems. Singapore:
Springer Singapore; 2018, p. 45–59.

[21] Zhang Z, Chong A, Pan Y, Zhang C, Lam KP. Whole building energy model for
HVAC optimal control: A practical framework based on deep reinforcement learn-
ing. Energy Build 2019;199:472–90. https://doi.org/10.1016/j.enbuild.2019.07.
029.

[22] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A,
Riedmiller M, Fidjeland AK, Ostrovski G, et al. Human-level control through deep
reinforcement learning. Nature 2015;518(7540):529–33.

[23] Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrit-
twieser J, Antonoglou I, Panneershelvam V, Lanctot M, et al. Mastering the game
of go with deep neural networks and tree search. Nature 2016;529(7587):484–9.
https://doi.org/10.1038/nature16961.

[24] Ruelens F, Iacovella S, Claessens BJ, Belmans R. Learning agent for a heat-pump
thermostat with a set-back strategy using model-free reinforcement learning.
Energies 2015;8(8):8300–18. https://doi.org/10.3390/en8088300.

[25] Costanzo GT, Iacovella S, Ruelens F, Leurs T, Claessens BJ. Experimental analysis
of data-driven control for a building heating system. Sustain. Energy Grids Netw.
2016;6:81–90. https://doi.org/10.1016/j.segan.2016.02.002.

Applied Energy 298 (2021) 117164M. Biemann et al.
[26] Ruelens F, Claessens BJ, Vandael S, De Schutter B, Babuška R, Belmans R.
Residential demand response of thermostatically controlled loads using batch
reinforcement learning. IEEE Trans Smart Grid 2016;8(5):2149–59. https://doi.
org/10.1109/tsg.2016.2517211.

[27] Wei T, Wang Y, Zhu Q. Deep reinforcement learning for building HVAC control.
In: Proceedings of the 54th annual design automation conference 2017. 2017,
p. 1–6. https://doi.org/10.1145/3061639.3062224.

[28] Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D.
Continuous control with deep reinforcement learning. 2015, arXiv preprint arXiv:
1509.02971.

[29] Wang Y, Velswamy K, Huang B. A long-short term memory recurrent neural
network based reinforcement learning controller for office heating ventilation
and air conditioning systems. Processes 2017;5(3):46. https://doi.org/10.3390/
pr5030046.

[30] Li Y, Wen Y, Tao D, Guan K. Transforming cooling optimization for green data
center via deep reinforcement learning. IEEE Trans Cybern 2019;50(5):2002–13.
https://doi.org/10.1109/tcyb.2019.2927410.

[31] Gao G, Li J, Wen Y. Energy-efficient thermal comfort control in smart buildings
via deep reinforcement learning. 2019, arXiv preprint arXiv:1901.04693.

[32] Du Y, Zandi H, Kotevska O, Kurte K, Munk J, Amasyali K, Mckee E, Li F.
Intelligent multi-zone residential HVAC control strategy based on deep rein-
forcement learning. Appl Energy 2021;281:116117. https://doi.org/10.1016/j.
apenergy.2020.116117.

[33] Henderson P, Islam R, Bachman P, Pineau J, Precup D, Meger D. Deep
reinforcement learning that matters. 2017, arXiv preprint arXiv:1709.06560.

[34] Kathirgamanathan A, Twardowski K, Mangina E, Finn DP. A centralised soft
actor critic deep reinforcement learning approach to district demand side
management through citylearn. In: Proceedings of the 1st international workshop
on reinforcement learning for energy management in buildings & cities, 2020,
p. 11–4.

[35] Vazquez-Canteli JR, Henze G, Nagy Z. MARLISA: Multi-agent reinforcement
learning with iterative sequential action selection for load shaping of grid-
interactive connected buildings. In: Proceedings of the 7th ACM international
conference on systems for energy-efficient buildings, cities, and transportation.
2020, p. 170–9. https://doi.org/10.1145/3408308.3427604.

[36] Xu S, Wang Y, Wang Y, O’Neill Z, Zhu Q. One for many: Transfer learning for
building HVAC control. In: Proceedings of the 7th ACM international conference
on systems for energy-efficient buildings, cities, and transportation. 2020, p.
230–9. https://doi.org/10.1145/3408308.3427617.

[37] Lissa P, Schukat M, Barrett E. Transfer learning applied to reinforcement
learning-based hvac control. SN Comput. Sci. 2020;1(3):1–12.

[38] Bertsekas DP. Dynamic programming and optimal control. Control, 3rd ed.. vol.
II, 2010.

[39] Sutton RS, Barto AG. Reinforcement learning: an introduction. MIT press; 2018.
[40] Puterman ML. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons; 2014.
[41] Nachum O, Norouzi M, Xu K, Schuurmans D. Bridging the gap between value

and policy based reinforcement learning. In: Advances in neural information
processing systems. 2017, p. 2775–85.

[42] Haarnoja T, Tang H, Abbeel P, Levine S. Reinforcement learning with deep
energy-based policies. In: Proceedings of the 34th international conference on
machine learning-vol. 70, 2017, p. 1352–61.

[43] Sutton RS, McAllester DA, Singh SP, Mansour Y. Policy gradient methods for
reinforcement learning with function approximation. In: Advances in neural
information processing systems. 2000, p. 1057–63.
18
[44] Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M. Deterministic
policy gradient algorithms. 2014.

[45] Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D,
Kavukcuoglu K. Asynchronous methods for deep reinforcement learning. In:
International conference on machine learning. PMLR; 2016, p. 1928–37.

[46] Schulman J, Levine S, Abbeel P, Jordan M, Moritz P. Trust region pol-
icy optimization. In: International conference on machine learning; 2015, p.
1889–97.

[47] Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy
optimization algorithms. 2017, arXiv preprint arXiv:1707.06347.

[48] Fujimoto S, van Hoof H, Meger D. Addressing function approximation error in
actor-critic methods. In: Proceedings of machine learning research, vol. 80, 2018.
p. 1587–96.

[49] Haarnoja T, Zhou A, Abbeel P, Levine S. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In: International
conference on machine learning; 2018. p. 1861–70.

[50] Riedmiller M. Neural fitted q iteration–first experiences with a data efficient
neural reinforcement learning method. In: European conference on machine
learning. Springer; 2005, p. 317–28.

[51] Hasselt HV. Double Q-learning. In: Advances in Neural Information Processing
Systems. 2010, p. 2613–21.

[52] Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double Q-
learning. In: 30th AAAI conference on artificial intelligence, AAAI 2016. 2016,
arXiv:1509.06461.

[53] Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J, Kumar V, Zhu H,
Gupta A, Abbeel P, et al. Soft actor-critic algorithms and applications. 2018,
arXiv preprint arXiv:1812.05905.

[54] TC A, et al. Data center power equipment thermal guidelines and best practices.
2016, ASHRAE TC 9.9, ASHRAE, USA.

[55] Raffin A, Hill A, Ernestus M, Gleave A, Kanervisto A, Dormann N. Stable
baselines3. In: GitHub Repository. GitHub; 2019, https://github.com/DLR-RM/
stable-baselines3.

[56] Ahmed Z, Le Roux N, Norouzi M, Schuurmans D. Understanding the impact of
entropy on policy optimization. In: International conference on machine learning.
PMLR; 2019, p. 151–60.

[57] Chen B, Cai Z, Bergés M. Gnu-rl: A precocial reinforcement learning solution
for building hvac control using a differentiable mpc policy. In: Proceedings of
the 6th ACM international conference on systems for energy-efficient buildings,
cities, and transportation. 2019, p. 316–25. https://doi.org/10.3389/fbuil.2020.
562239.

[58] Dabney W, Rowland M, Bellemare M, Munos R. Distributional reinforcement
learning with quantile regression. In: Proceedings of the AAAI conference on
artificial intelligence, vol. 32(1), 2018.

[59] Bellemare MG, Candido S, Castro PS, Gong J, Machado MC, Moitra S, Ponda SS,
Wang Z. Autonomous navigation of stratospheric balloons using reinforcement
learning. Nature 2020;588(7836):77–82. https://doi.org/10.1038/s41586-020-
2939-8.

[60] Schulman J, Moritz P, Levine S, Jordan M, Abbeel P. High-dimensional con-
tinuous control using generalized advantage estimation. In: Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

[61] Kakade S, Langford J. Approximately optimal approximate reinforcement learn-
ing. In: Proceedings of the nineteenth international conference on machine
learning. Morgan Kaufmann Publishers Inc.; 2002, p. 267–74.

