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PV Photo-voltaic cells
SDE Stochastic differential equation
SOC State of charge
RMS Root mean square

1 Introduction

If the proliferation of renewable energy sources is to be continued, solutions for the
related problems have to be implemented. The problems include, but are not limited
to, mismatch in generation and load, voltage deviation, congestion, and demand
ramps. While historically these problems were manageable through control of the
generation, this will not be an option in the future, as a majority of power generation
will be coming from intermittent renewable energy sources. On the other hand,
recent advances and adoption of digital solutions and smart devices present new
opportunities for smart energy demand [33, 44, 49, 50], by utilising the inherent
energy flexibility [25]. With buildings accounting for around 40% of energy demand
[31], they have been identified as key assets in this context [34]. However, to actually
make buildings smart and unlock the inherent energy flexibility, suitable methods
for controlling them have to be employed. While smart buildings seek to resolve
high-level problems, there remains the dilemma that the buildings themselves are
subject to decentralised and independent control and given over to the controllers
commissioned by the building owners. To deal with this, it has been proposed to
use a two-level control hierarchy [12, 17, 58] in which the upper level consists
of controllers that formulate price signals. The price signals are then sent to the
lower-level controllers that are controlling energy flexible systems such as smart
buildings. The objective of the lower-level controllers is to minimise costs that, if
the price signals are formulated correctly, also solve the grid problems [19, 29].
A generalisation of this hierarchical setup of nested controllers is described as the
smart-energy operating system (SE-OS) in [36, 44, 45].

For smart control of buildings, both one-way and two-way communication setups
are used—often referred to as indirect and direct control, respectively. The simplest
and most resilient setup is achieved by one-way communication where a price signal
is sent to a group of buildings in a certain part of the grid. In the paper [12], it is
shown how consumers, which are sensitive to varying prices, can be used to control
the electricity load using a one-way price signal. Estimation of the price response
is based on data measurable at grid level, removing the need to install sensors and
communication devices between each individual consumer and the price-generating
entity.

A sizeable list of examples of smart control of buildings from EBC’s Annex 67
project can be found in [24] with details on the central control strategies presented in
[56]. The potential of the energy flexibility of buildings was thoroughly investigated
in this project, and it was found that by applying suitable control methods, it was
found that the suitable application of control methods exposed enormous potential
for energy flexibility in buildings. Another important project in regards to this is
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the SmartNet project, which, together with the CITIES project, demonstrated the
potential of automatic energy flexible control for a number of buildings with an
indoor swimming pool [4, 36].

In this chapter, special focus will be put on how to formulate extended and
advanced disturbance models in such a way that short-term forecasts are well
described by them—the most important disturbances to consider for smart control
of buildings are weather-related.

The models will be formulated as stochastic grey-box models. This modelling
framework bridges the gap between physical and statistical modelling that makes it
possible to combine knowledge from physics and statistics in an optimal way. The
grey-box models will be formulated using discretely observed stochastic differential
equations written down as continuous–discrete-time stochastic state-space models.
In statistics, such models are also called continuous state-space Hidden Markov
models.

Grey-box models are typically rather simple models in terms of physics, but they
are formulated with emphasis on the stochastic part of the models. This implies that
we will be able to use rigorous statistical model techniques and that the models
enable for an efficient use of online sensors for control and forecasting. This
modelling framework has been used to describe the thermal dynamics of buildings
[5, 9, 26, 27, 40] and energy systems in many control-oriented projects [16].

First, we will describe the grey-box modelling framework in Sect. 2. Next, we
shall describe some examples of grey-box models for buildings and smart building-
related components in Sect. 4. This includes models for heat pumps, stationary, and
mobile batteries (EVs).

The states of a building, e.g., the indoor air temperature, are heavily influenced
by the weather conditions, and a special focus of this chapter is to establish rather
simple stochastic models for the most important weather variables. In relation
to control, the weather acts as a disturbance, and in order to obtain the best
possible controllers, it is important that the controllers are able to take advantage of
short-term forecasts of the disturbances. Models for the most relevant disturbance
variables for control of buildings are described in Sect. 5.

The theory for model predictive control is outlined in Sect. 6. A special emphasis
is put on how models for predicting the weather variables can be integrated into the
concepts of model predictive control, and this is the topic of Sect. 7.

2 Grey-Box Models

The models in this chapter are based on the grey-box modelling framework. This
framework is typically based on a non-linear model with a partial theoretical
structure and some unknown parts derived from data. Consequently, the grey-box
framework bridges the gap between models based on first principle (white-box
models) and models based solely on data (black-box models) (Fig. 1).
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Fig. 1 Grey-box modelling bridges the gap between white- and black-box modelling

Grey-box models are formulated as a state-space model where the dynamics of
the states is described in continuous time by a set of stochastic differential equations
(SDEs) (system equations). The discrete-time observations are related to the states
by a set of static equations (observation equations). Hence, a grey-box is formulated
as continuous–discrete-time stochastic state-space model in the form

dx(t) = f (x(t),u(t), d(t), t)dt
︸ ︷︷ ︸

Drift

+ g(x(t),u(t), d(t), t)dω(t)
︸ ︷︷ ︸

Diffusion

, (1)

yk = h(x(tk)) + vk , vk ∼ N(0,Rv) , (2)

where x is the system vector, ω is a standard Wiener process (also often called a
Brownian motion), and f and g are the drift and diffusion functions, respectively.
h is the observation function and vk is the observation noise. The drift function is
the deterministic part of the SDE, whereas the diffusion function describes all the
uncertainties not properly described in the drift.

If the system in (1)–(2) is linear, the model is written as

dx(t) = (Ax(t) + Bu(t) + Ed(t)) dt + �dω(t) , (3)

yk = Cx(tk) + vk , vk ∼ N(0,Rv) , (4)

where A, B, E, C, and � are matrices governing the state evolution, input,
disturbance, observation, and noise, respectively.

Modelling physical systems using SDEs provides a natural method to represent
the phenomenon as it evolves in continuous time. In contrast to discrete-time
models, prior physical knowledge about the system can rather easily be included,
and the estimated parameters do not depend on the sampling time.

There are many reasons for introducing the system noise (the diffusion term):
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• Modelling approximations. For example, the dynamics, as described by the drift
term, might be an approximation to the true system.

• Unrecognised and unmodeled inputs. Some variables that are not considered,
such as wind speed, may affect the system.

• Noise in measurements of input variables. In such cases the measured input
signals are regarded as the actual input to the system, and the deviation from
the true input is described by the noise term.

In the observation equation, a noise term is also introduced. The reason for this
noise term is:

• Noise in measurements of output variables. The sensors that measure the output
signals are affected by noise and drift.

It seems reasonable to assume that the system noise and the measurement noise
are independent.

This chapter focuses on simple grey-box models, describing the heat dynamics of
a building and related components such as a heat pump and batteries (stationary and
mobile). The main purpose is to describe the dynamics of the building and relevant
components. In particular we shall focus on how the heat dynamics are affected by
outdoor climate.

2.1 A Simple Linear Grey-Box Model

Let us consider a simple second-order grey-box model for the thermal dynamics of a
building ([40]). Here, the so-called RC formulation is used and the thermal capacity
is lumped into two states, and each of these states has an associated thermal mass.

[

dTm

dTi

]

=
[ −1

ricm

1
ricm

1
rici

−
(

1
raci

+ 1
rici

)

]
[

Tm

Ti

]

dt

+
[

0 0 Awp/cm

1/(raci) 1/ci Aw(1 − p)/ci

]

⎡

⎣

Ta

φh

φs

⎤

⎦ dt +
[

dωm(t)

dωi(t)

]

. (5)

T r (t) = [

0 1
]

T (t) + e(t) . (6)

The states of the model are given by the temperature Tm of a large heat
accumulating medium with the heat capacity cm and by the temperature Ti of the
room air and possibly the inner part of the walls with the capacity ci . The term
ri is the resistance against heat transfer between the room air and the large heat
accumulating medium, while ra is the resistance against heat transfer from the room
air to the ambient air with the temperature Ta .
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The input energy is supplied by the electrical heaters φh and the solar radiation
that penetrates through the windows facing south Awφs , where Aw is the effective
window area. The effective window area is the window area corrected for shade
effects and absorption and reflection by the triple glazed windows. Note that only
the indoor air temperature is measured.

This model has been identified in [40]. It is concluded that for the considered
building, this second-order model provides a good description of all the variations
in the data since the residuals are white noise. In that paper, it is described how the
parameters are estimated using a maximum likelihood method, and furthermore,
it was concluded that all the solar radiation is influencing the indoor air since the
assumption p = 0 seems reasonable (the parameter p was not significant).

3 Identification of Grey-Box Models

Formulating suitable grey-box models is an iterative process in which physical
considerations are combined with information obtained by statistical observations.
The typical starting point is to formulate the mathematical equations governing the
most important physical dynamics. These equations are then used as the initial
model. Next, the parameters of the model are estimated, and finally, the model is
used to generate residuals. These residuals are key to the model validation step, and
if it is concluded that the residuals still show systematic behaviour, then the residuals
are analysed in order to identify how the model can be improved and extended.

3.1 Initial Model Structure Identification

Typically, the initial model order, i.e., the number of state equations, and the
dominating structure of the model are determined by physics. However, also
statistical methods are useful. For instance, it is well known that the autocorrelation
and partial autocorrelation function contain important information about the order
of (linear) models. The following step-by-step guide summarises the procedure of
formulating grey-box models:

1. Make a drawing of the physical system that includes the various methods for heat
transfer (conductive, convective, and radiation).

2. Write down the mass and energy balance equations for the system.
3. Determine the causality of the system. Which time series data can be considered

as input and which as output? For instance, for a building with feedback or
controlled internal air temperature, the output could be the heat consumption,
whereas for a building with no feedback, e.g., when the heating signal is
determined by a PRBS signal, the internal air temperature could be the output.
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4. Evaluate if any non-linear phenomena must be taken into account explicitly
in the initial phase (later on statistical methods can be used for identifying
non-linear phenomena). Such phenomena could be significantly influenced by
wind speed, complicated glass construction, humidity, influence from rainfall,
etc. Some non-linear effects can be described by a transformation of the input
variables. In [54] the non-linear effect of solar radiation is described in a grey-
box model using spline basis functions.

5. Evaluate if any non-stationary phenomena must be taken into account explicitly
in the initial phase (later on statistical methods can be used for identifying non-
stationary phenomena). Examples of such phenomena could be the fermentation
of a new concrete building, moisture in the construction, opening of windows and
doors, etc. For control applications, slowly varying non-stationary phenomena
can be handled by considering adaptive and recursive methods [1, 38].

3.2 Estimation of Model Parameters

Typically, the model parameters are estimated either using the least squares method
(LS) or the maximum likelihood estimation (MLE) method. The advantage of the
MLE method is that this method also allows for estimating the parameters related
to the noise term. Here, we briefly introduce the MLE method for estimating
parameters in grey-box models. The method is described in detail in [30].

Given a sequence of measurements YN = {Y 1,Y 2, · · · ,YN }, the likelihood
function is the joint probability density of all the observations but considered as a
function of the unknown parameters. Thus, the likelihood function can be written as
the product of the one-step ahead conditional densities:

L(θ |YN,UN) =
N
∏

k=1

p(Y k|θ,Yk−1,Uk)p(X0|θ) , (7)

where p(Y k|θ,Yk−1,Uk) is the probability of observing Y k given the previous
observations, inputs, and set of parameters θ . This is the so-called exact likelihood
function that contains a parameterisation of the density associated with the initial
state X0.

Since the systems are assumed to be driven by Wiener processes for which
the increments are Gaussian, the one-step ahead density for linear systems is also
Gaussian. For most non-linear systems, this is still a reasonable assumption, and this
assumption can be checked—see, e.g., [6].

In the Gaussian case, the conditional density is completely characterised by the
conditional mean (the prediction) and the conditional covariance. By introducing
the one-step prediction error (also called the innovation error or residuals)

εk|k−1 = Y k − Ŷ k|k−1 , (8)
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and the associated covariance, Rk|k−1 = Var(Y k|Yk−1, θ), the likelihood function
can be written as

L(θ;YN,UN) = p(YN |UN, θ) (9)

=

⎛

⎜

⎜

⎝

N
∏

k=1

exp
(

− 1
2ε�

k|k−1R
−1
k|k−1εk|k−1

)

√

det
(

Rk|k−1
)
(√

2π
)L

⎞

⎟

⎟

⎠

p(X0|θ) , (10)

where L is the dimension of the observation space. Using the logarithm, we obtain
the log-likelihood function

l(θ;YN,UN) = −1

2

N
∑

k=1

(

ε�
k|k−1R

−1
k|k−1εk|k−1 + log

(

det
(

Rk|k−1
)

(2π)
L
2

))

+ log(p(X0|θ)).

The parameter estimates are found by maximising the log-likelihood function

θ̂ = arg max
θ

{

l(θ;YN,UN)
}

. (11)

The corresponding value of the log-likelihood is the observed maximum likelihood
value given the available data set.

For linear models, the conditional mean and covariance are calculated using an
ordinary Kalman filter, while for non-linear models, an extended Kalman filter is
used. See [30] for further details.

3.3 Uncertainty of Parameter Estimates

Uncertainty of parameter estimates is an essential output of any statistical parameter
estimation scheme. This uncertainty lies in the facilitation of subsequent statistical
tests. For the software implementation used here [28, 39], an estimate of the
uncertainty of the parameter estimates is obtained by using the fact that by the
central limit theorem the ML estimator is asymptotically Gaussian with mean θ

and covariance:

�
θ̂

= H−1, (12)

where the matrix H is given by

hij = −E

{

∂2

∂θi∂θj

(l(θ |YN))

}

,i, j = 1, . . . , p .
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An approximation to H can be obtained from

hij ≈ −
(

∂2

∂θi∂θj

(l(θ |YN))

)
∣

∣

∣

θ=θ̂
,i, j = 1, . . . , p ,

which is simply the Hessian evaluated at the maximum of the log-likelihood
function. To obtain a measure of the uncertainty of the individual parameter
estimates, the covariance matrix is decomposed as

�
θ̂

= σ
θ̂
Rσ

θ̂
, (13)

into σ
θ̂
, which is a diagonal matrix of the standard deviations of the parameter

estimates, and R, which is the corresponding correlation matrix.

3.4 Selection of Model Structure

Basically, the two main categories of problems related to the order of the model are:

1. Model too simple: A common problem is that the residuals for a given model
are autocorrelated. In this case the model needs to be extended (for grey-box
models, more states are needed). Another common problem is that the residuals
are cross-correlated with some explanatory variables (e.g., large residuals for
large wind speeds). In this case, this (or these) explanatory variable needs to be
included in the model.

2. Model too large: A common problem is that some of the parameters are
insignificant. In order to ensure a reliable estimation of the performance, the
amount of parameters must be reduced by removing insignificant parameters.

3.5 Model Validation

If the residuals from a given modelling step show systematic variation, then the
model is too simple and it can be improved. Consequently, model validation is a
very important step in model building.

The following methodologies can be used in relation for model validation:

1. Test for white noise residuals.
Typically, the autocorrelation function (ACF) of the residuals is used here. If a
test for white noise residuals fails, then the model must be extended by extending
the model order, which for grey-box models is the number of states.

2. Test for dependency with inputs.
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Plot residuals against the inputs to see if any dependency exists. The cross-
correlation function (CCF) (see [38, p. 230]) can be used to identify linear
dependencies that have to be added to the model.

3. Test for parameter significance.
See the next section on model validation. Here, it is mentioned that if a parameter
is found to be insignificant, then in general this parameter should be removed
from the model and the parameters of the reduced model are estimated.

4. Check for correlation between parameters.
Most software for parameter estimation provides a correlation matrix of the
estimated parameters. A numerically very high (say larger than .98) correlation
between two parameter estimates indicates that one of these two parameters
should be either excluded from the model or fixed to some physically assumed
values.

3.6 Comparison of Models

1. Test between (nested) models.
If two models are nested, i.e., the smaller model (B) can be found just by

removing parts of a larger model (A), then the likelihood-ratio test (LRT) is very
useful. The LRT value is given as D = 2(log L(A)− log L(B)), where log L(A)

is the logarithm of the likelihood function for model A. For grey-box modelling,
the asymptotic test principles based on Wilks’ Theorem are used. Given that
the model can be reduced to model B, the quantity D is according to Wilks’
Theorem asymptotically χ2(k−m) distributed, where k and m are the number of
parameters in models A and B, respectively. For large values of D, it is concluded
that the best model is the larger model. See, e.g., [42] for further details.

In CTSM-R, the value log L is found using summary().
2. Comparison between (non-nested) models. If two models are non-nested, then

methods based on information criteria can be used—see page 174 in [38]. This
consists of computing an information criterion, such as the AIC or BIC:

AIC = 2k − 2 log L(A), BIC = 2 log(N) − 2 log L(A) .

The preferred model is then simply found as the model with the lowest infor-
mation criteria. Alternatively, and preferably, when a lot of data are available,
cross-validation can be used [8]. In its simplest form, this procedure can be
summarised as:

a. Split data into two parts, YTrain and YValidate. A typical split is 80% for YTrain
and 20% for YValidate.

b. Estimate model parameters using only the data contained in YTrain. With these
model parameters, compute the one-step residuals for YValidate.



Model Predictive Control Based on Stochastic Grey-Box Models 339

c. Using these residuals, evaluate either the likelihood function (9) or the sum of
squared residuals (RMS).

d. The model with the highest likelihood or lowest RMS is preferred.

4 Smart Building-Related Models

This section presents multiple models for a building where the model of the building
itself is the same, but the heating system models and control strategies are different.
The first model uses conventional electrical heaters (radiators) to supply heat to the
room air. The second model uses a heat pump: a compressor heats water, which then
flows into pipes based under the floor. This ground-sourced heating is very efficient
electricity-wise due to the compressor and is thus an attractive solution for heating.

The models are formulated using stochastic differential equations (SDEs), and
the stochastic model for the building is closely related to the simple model
introduced in Sect. 2.1.

4.1 The Heat Pump Model

Halvgaard et al. [20] describe a model for a building with a heat pump that is reused
in this chapter. The model includes the same two important states as the model in
Sect. 2.1: the room air temperature and the floor medium temperature. Additionally,
it includes the temperature of the water connected to the heat pump. That makes the
system states x(t) = [

Tr(t), Tf (t), Tw(t)
]T . Table 1 lists and describes all variables

in the model, and Fig. 2 shows an illustration of the smart building model and the
directions of the heat dynamics.

Regarding the disturbances of the model, two elements are of high importance:
the solar radiation and ambient air temperature. The solar radiation generally plays a
double role regarding the heating of buildings: it directly enters a building through,
e.g., windows, but it also highly influences the ambient air temperature, which in

Table 1 Description of the variables in the heat pump model

Variable Unit Description

Tr
◦C The room air temperature

Tf
◦C The temperature of the floor medium

Tw
◦C The temperature of the water in the compressor and pipes

Ta
◦C The ambient air temperature

Wc W The energy delivered to the compressor of the heat pump

φs W/m2 The solar radiation entering the building
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Fig. 2 An illustration of the
smart house model. Each
state has an associated heat
capacity and temperature. The
arrows indicate the positive
direction of energy flow

Heat pump

Condenser tank

turn affects the building. Later sections will describe and model these dynamics and
cross-correlations.

Based on Fig. 2, the equations below describe the overall building dynamics

CrdTr(t) = (

Qf r(t) − Qra(t) + Awpφs(t)
)

dt + σrdωr(t) ,

Cf dTf (t) = (

Qwf (t) − Qf r(t) + Aw(1 − p)φs(t)
)

dt + σf dωf (t) ,

CwdTw(t) = (

ηWc(t) − Qwf (t)
)

dt + σwdωw(t) ,

(14)

where Cr , Cf , and Cw are heat capacities for the room air, floor, and water,
respectively. ωr , ωr , and ωw are Wiener processes for each state, and σr , σf , and
σw are noise constants. The heat flows are given by

Qra(t) = r−1
ra (Tr(t) − Ta(t)) ,

Qf r(t) = r−1
f r

(

Tf (t) − Tr(t)
)

,

Qwf (t) = r−1
wf

(

Tw(t) − Tf (t)
)

.

(15)

We can write the set of SDEs in linear form as in (3)

A =
⎡

⎢

⎣

− 1
rf rCr

− 1
rraCr

1
rf rCr

0
1

rf rCf
− 1

rwf Cf
− 1

rf rCf

1
rwf Cf

0 1
rwf Cw

− 1
rwf Cw

⎤

⎥

⎦ , B =
⎡

⎢

⎣

0
0
η

Cw

⎤

⎥

⎦ ,

E =
⎡

⎢

⎣

1
rraCr

Aw
(1−p)

Cr

0 Aw
p

Cf

0 0

⎤

⎥

⎦ , C = [

1 0 0
]

,

(16)
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with the variables x(t) = [

Tr(t), Tf (t), Tw(t)
]T , u(t) = Wc(t), d(t) =

[Ta(t), φs(t)]T . Table 2 lists and briefly describes all the parameters in the model.

4.2 The Electrical Heater Model

The model using electrical heaters is almost identical to the one introduced in
Sect. 2.1, with the exception of p, which is significant. Otherwise the parameters for
this model are the same as used for the heat pump model. By separating the input
and disturbance variables in the previous introduced model, we obtain the following
linear second-order system:

A =
[− 1

rf rCr
− 1

rraCr

1
rf rCr

1
rf rCf

− 1
rf rCf

]

, B =
[

1
Cw

0

]

,

E =
[

1
rraCr

Aw
(1−p)

Cr

0 Aw
p

Cf

]

, C = [

1 0
]

,

(17)

with the variable x(t) = [

Tr(t), Tf (t)
]T , u(t) = Wc(t), d(t) = [Ta(t), φs(t)]T .

4.3 Buildings with Stationary Batteries and Electrical Vehicles

In the very near future, electrical vehicles (EVs) will be in almost every household,
and it is believed by many that future smart buildings will include stationary

Table 2 The values used in the model for a single smart home in (14) and (17)

Parameter Value Unit Description
Cr 810 kJ/◦C Heat capacity constant for the room air
Cf 3315 kJ/◦C Heat capacity constant for the floor
Cw 836 kJ/◦C Heat capacity constant of the water in the pipes
rra 0.036 kJ/(◦C h) Resistance against heat transfer between the room air and

the ambient air
rf r 0.0016 kJ/(◦C h) Resistance against heat transfer between the floor and the

room air
rwf 0.036 kJ/(◦C h) Resistance against heat transfer between the water and the

floor

p 0.1 The fraction of energy from the solar energy into the room
air

η 3 The heat pump coefficient of performance

Aw 2.9 The effective window area
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batteries [21, 57, 63]. The latter has the purpose of storing electricity harvested from
photo-voltaic cells (PVs) and to buy and sell electricity from the market when the
price is low and high, respectively. Adding a stationary battery and potentially an EV
also greatly increases the flexibility of a building. We follow the modelling approach
as in [63]. For more extended state-space models for batteries, see [7, 62]. We shall
not, however, use or demonstrate these models in this chapter.

The fundamental differential equation governing the state of charge (SOC) of an
(very simplified) integrating battery has the form

γ̇ (t) = V (t)

Q
i(t) , (18)

where γ ∈ [0, 1] is the SOC (0 is discharged, while 1 is fully charged), V is the
voltage, Q is the total battery capacity, and i is the current. We can rewrite this as
the power flowing in and out of the battery

γ̇ (t) = 1

Q

(

η+P +(t) − η−P −(t)
)

, (19)

where P + and P − are the power flow in and out of the battery and η+ and η− are
the respective efficiency constants. The corresponding SDE formulation is

dγ (t) = (

η+P +(t) − η−P −(t)
)

dt + σγ dω(t) . (20)

If the smart building is equipped with both a stationary battery and an EV, then we
need a description of both

dγev(t) = (

η+
evP

+
ev(t) − η−

evP
−
ev(t)

)

dt + σevdωev(t) , (21a)

dγbat (t) = (

η+
batP

+
bat (t) − η−

batP
−
bat (t)

)

dt + σbatdωbat (t) , (21b)

where γev and γbat are the EV and stationary battery SOC, respectively. P +
bat and

P −
bat are the bought and sold electricity from the market, and P +

ev and P −
ev are

charging and discharging the EV battery, respectively.
The two batteries thus add two additional states to the smart building state-

space model. To write the model in state-space form requires some assumptions.
First, we assign the EV usage as a disturbance variable, dev(t) = P −

d,ev(t).
Second, we assume that all the electricity generated by PVs and bought from
the market go directly to the stationary battery. The solar radiation is thus also
a disturbance, dbat (t) = φs(t). The input variable for the battery is ubat (t) =
[

P +
bat (t), P

−
bat (t),Wc(t), P

+
ev(t)

]T
. Writing the state-space formulation for the

entire smart building including batteries, the state-space variables become x(t) =
[

Tr(t), Tf (t), Tw(t), γev(t), γbat (t)
]T , u(t) = [

P +
bat (t), P

−
bat (t),Wc(t), P

+
ev(t)

]T
,

and d(t) = [

Ta(t), φs(t), P
−
ev(t), φs(t)

]T . Similarly, the continuous-time linear
system likewise is
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A =
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− 1
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⎤

⎥

⎥

⎥
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⎦

, (22a)

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
η

Cw
0 0 0

0 ηev

Qev
0 0
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Qbat
− ηbat

Qbat

ηbat
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− ηbat
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⎤

⎥

⎥

⎥

⎥

⎥

⎦

, C =
⎡

⎣

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎦ , (22b)

E =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
rraCr

(1−p)
Cr

0 0

0 p
Cf

0 0

0 0 0 0
0 0 − ηev

Qev
0

0 0 0 ηbat

Qbat
ηpvnpv

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (22c)

5 Disturbance Modelling

In this section, we shall use the well-documented meteorological data presented in
[3] as the foundation for the grey-box models for the disturbances. Table 3 lists and
describes each attribute of the data, which is collected from two weather stations in
Værløse and Taastrup in Denmark. Samples are taken hourly from January 1, 1967
to December 31, 1973. The cloud cover is measured on the so-called okta scale.
An okta is an integer in the range from 0 to 9, where 0 is completely clear skies,
gradually gets more cloudy up till 8 that is fully overcast. Okta 9 is the class of
non-observable cloud cover conditions, e.g., in foggy weather or heavy snow fall.
We thus denote the okta state space by

C = {0, 1, . . . , 8, 9} . (23)

Table 3 Facts about the data and they are measured

Attribute Notation Unit Measurement method

Cloud cover {c′, c, κ, Zκ } okta Measured once every hour

Diffuse radiation ID W/m2 The average of 6 observations within an hour

Direct radiation IN W/m2 The average of 6 observations within an hour

Net radiation Rn W/m2 The average of 6 observations within an hour

Ambient air temperature Ta
◦C The average of 6 observations within an hour
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5.1 Cloud Cover

The type, height, and amount of cloud cover have enormous influence on energy
levels and balances of the lower atmosphere, i.e., the local weather close to Earth’s
surface. The variations of the solar radiation are mainly due to the absorption of
energy by the molecules of the clouds. For example, in case of a heavy cloud cover,
much less solar radiation gets through the atmosphere down to the surface. In a
control context of a smart building that has PVs and is able to harvest energy from
the sun, it is crucial to know the amount of solar radiation available. The cloud cover
is undoubtedly the single most important factor in this case. The cloud cover also
has a big impact on the air temperature in the lower atmospheric layers. When the
rays from the sun hit the Earth’s surface, a certain fraction gets absorbed and heats
up the soil that, in turn, heats up the air. A good model for the cloud cover is thus a
crucial element of a disturbance model for describing the local weather.

5.1.1 Discrete State-Space Cloud Cover Model

Figure 3 shows a plot of the cloud cover data from March. The overall dynamics
seems fluctuating and is to some extend random. However, the cloud cover seems
to spend more time and be more stable at both the ends of the scale (around okta 0
and 8).

Due to the discrete measure of the cloud cover, it is tempting to opt for a discrete
state-space model to describe the cloud cover. An example of this is a continuous-
time Markov model, see, e.g., [53]. The literature does describe successful models
of this kind using both homogeneous and in-homogeneous models to describe the
diurnal behavioural variation of the cloud cover in Denmark [41, 43]. The results
confirm that the cloud cover is more stable in the clear sky and overcast states, with
greater fluctuation in the middle states.

This model very well describes the probabilistic dynamics of the cloud cover. It
also supplies estimates of the future expected value through the Kolmogorov forward
equations. But the rest of the disturbance models will be formulated as continuous
state-space models and rely on SDEs. Therefore, in a combined disturbance model
for the smart building and in an MPC framework, a SDE describing the cloud cover

Fig. 3 A sample visualisation of the cloud cover data in March
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becomes more convenient. For this reason, we shall now formulate, estimate, and
validate a SDE-based model for the cloud cover.

5.1.2 Continuous State-Space Model Based on Stochastic Differential
Equations

Recall the typical form of SDEs, explained in Sect. 4

x(t) = f (x(t), t)dt + g(x(t), t)dω(t) . (24)

The analysis from the results of the Markov models in, e.g., [43] show that the cloud
cover is governed by very special dynamics. It turns out that the process is less likely
to move when it is in the end points (okta 0 and 8) and more likely for middle oktas.
Formulating a SDE with these dynamics is not a trivial process. A first observation
is that the cloud cover state space has boundaries. It is thus important to ensure that
the SDE does not allow the process to go outside the boundaries. Let K = [0, 1] be
the set of real numbers from 0 to 1, and let κ ∈ K denote the cloud cover state on
some normalised scale. Starting with the diffusion, g, a very appropriate function
can be

g(κ(t), t) = σκκ(t) (1 − κ(t)) , (25)

where σκ is a constant (Fig. 4). This choice ensures that the diffusion goes to zero
in both ends of the okta scale and is also largest in the middle—which is desirable
in order to make the process stay at either end longer time while ensuring that the
middle states are more transient. In the grey-box modelling framework, we should
assume some structure on the drift function, but it can be useful to also use some
flexible functions such as the Legendre polynomials to allow the data to freely form
them to easily maximise the likelihood function. The work in this chapter uses the
following mean reverting process:

dκ(t) = θ (κ(t)) (μ(κ(t)) − κ(t)) dt + σκκ(t)(1 − κ(t))dω(t) , (26)

where μ is the mean value and θ is the reversion speed. This SDE has a state-
dependent diffusion term that has some nice modelling features, but it also has some
pretty significant disadvantages from an estimation and simulation standpoint. The
next part will detail these disadvantages.

5.1.3 Transformation into a State-Independent Diffusion Process

State-dependent diffusion terms in SDEs give rise to problems in estimation and
simulation [46]. Two of the more influential problems are:
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Fig. 4 The diffusion function
in (25) with σκ = 1

• Simulation from a SDE with state-dependent diffusion can have slower conver-
gence rate and then require more computational power.

• Predictions using methods like the extended Kalman filter (EKF) can be wrong
and even illegal if they go outside of the bounds of the domain due to the
linearisation.

A popular solution to this problem in the literature is to use the so-called Lamperti
transformation [48].

The Lamperti transformation heavily relies on the result from stochastic calculus
called Ito’s lemma. Informally speaking, Ito’s lemma corresponds to the chain rule
for stochastic calculus: given a process, X, and a function, ψ(X), Ito’s lemma states
the derivative of the function as a stochastic process Z = ψ(X). That way, we can
alternatively view the lemma as the equivalence of two processes, X and Z, by a
closed formula using a transformation ψ . Consider a strictly positive process: by
taking the natural logarithm of the process, we create a new process that lives on the
entire real line. To obtain the differential equation governing this process, usually
we would use the chain rule. But for a stochastic process, we need Ito’s lemma. The
special case where we choose a function that results in a constant diffusion term, we
call the Lamperti transformation. Let us start by stating Ito’s very famous lemma
[22] (using some simplifying notation).

Lemma 1 (Ito’s Lemma) Let X be an Ito’s process in the form

dX = f (X, t)dt + g(X, t)dω.

Let the function ψ(X, t) ∈ C2(R × [0,∞)), and then the process

Z = ψ(X, t)

is an Ito’s process. Furthermore, Z is governed by the process

dZ=
(

∂ψ

∂t
(X, t)+f (X, t)

∂ψ

∂X
(X, t)+ 1

2

∂2ψ

∂X2
(X, t)g(X, t)2

)

dt+ ∂ψ

∂X
(X, t)g(X, t)dω.
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By choosing ∂ψ/∂X(X, t) to be equal to 1/g(X, t), the diffusion term becomes
exactly a unit for the Ito-transformed process, Z. The following theorem states this
result [22, 46].

Theorem 1 (Lamperti Transformation) Let X be an Ito’s process as in Lemma 1.
Define the function

ψ(X, t) =
∫

1

g(x, t)
dx

∣

∣

∣

∣

x=X

. Ifψ(X, t) is bijective ontoR, then Z has a unit diffusion term and has the following
process:

dZ =
(

∂ψ

∂t
(ψ−1(Z, t), t) + f (ψ−1(Z, t), t)

g(ψ−1(Z, t), t)
− 1

2

∂g

∂X
(ψ−1(Z, t), t)

)

dt + dω.

Applying the Lamperti transformation on the specific SDE in (26) (except for
leaving a constant on the diffusion term), the Lamperti-transformed process, Zκ =
ψ(κ, t), is

Zκ = ψ(κ, t) =
∫

1

x(1 − x)
dx

∣

∣

∣

∣

x=κ

= log(κ) − log(1 − κ) = log

(

κ

1 − κ

)

.

(27)

For κ ∈ K , the process Zκ is in all of the real numbers, R. The inverse of ψ is

κ = ψ−1(Zκ, t) = exp(Zκ)

1 + exp(Zκ)
. (28)

Using Theorem 1, the state-independent Lamperti-transformed process becomes

dZκ =
(

0 + f (κ, t)

κ(1 − κ)
+ κ − 1

2

)

dt + σψdω

=
⎛

⎝

f
(

exp(Zκ )
exp(Zκ )+1 , t

)

exp(Zκ )
exp(Zκ )+1

(

1 − exp(Zκ )
exp(Zκ )+1

) + exp(Zκ)

exp(Zκ) + 1
− 1

2

⎞

⎠ dt + σψdω

dZκ = fψ(Zκ)dt + σψdω .

(29)

To get an intuition of how the Lamperti transformation works, Fig. 5 shows an
example of a SDE with simple linear drift while having the diffuse function as in
(25), together with the Lamperti-transformed drift. For the Lamperti-transformed
process, the drift will make sure that it always stays around 0 and does not go
towards ±∞. But the most interesting feature of the Lamperti drift is perhaps that
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Fig. 5 A simple linear drift function (left) and its Lamperti-transformed equivalent (right) from
the process dX = 0.1 · (0.5 − X)dt + X(1 − X)dω

there is a stable stationary point at Zk = 0 driving the process towards zero. The
explanation should be found in the shape of the diffusion function that is largest
in the middle and goes to zero in the ends. Around Zk = 0, the diffusion is the
dominating force and has zero mean—i.e., is expected to keep the process around
zero due to the zero mean (at least expectation-wise). The variance, however, will
make sure to drive the process away from zero. But when the process gets too far
out, the drift will dominate again and force it towards zero.

Due to the advantages of dealing with a state-independent SDE, all estimation,
simulation, and prediction happen in the Lamperti domain in (29) and are subse-
quently transformed back to the original cloud cover domain by ψ−1. We now turn
to estimate parameters in (26).

5.1.4 Estimation of Parameters Embedded in the SDE

As previously mentioned, we need to base the choice on the drift function of the
SDE on physical properties of the process we attempt to model. We choose to use
the following SDE:

dκ = θ
√

κ(1 − κ)

(

exp(P7(κ))

1 + exp(P7(κ))
− κ

)

dt + σκ(1 − κ)dω , (30)

where P7(κ) is a linear combination of the first seven Legendre polynomials. The
model in (30) has a very complex mean value. The intuition is that it allows the mean
value to move rather freely in the range from 0 to 1, depending on the cloud cover
state. The reverting-speed term

√
κ(1 − κ) may seem like an over-complication in

the model. But previous cloud cover modelling attempts suggest that the process
spends more time in the ends of the okta scale. The term

√
κ(1 − κ) makes the drift

smaller at the ends of the scale and therefore intuitively makes the process stay there
for longer before reverting back to the middle.
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Before we are able to estimate parameters in the SDE in (26), we require a
transformation of the data, ζ : C → K , due to the diffusion term (since it requires
the process to be in the interval K = [0, 1]). First, we let okta 9 be missing
observations in the data, such that the observable okta state space (and the state
space we should model) is {0, 1, . . . , 8}. Choosing a good transformation is not
straightforward. We cannot simply divide the okta state space by 8. Doing so implies
that okta 0 in C corresponds to 0 in K and likewise okta 8 corresponds to 1 in K .
But the drift and diffusion of the SDE equal zero for κ = 0 and κ = 1 and the SDE
gets stuck. Furthermore, the Lamperti transformation is not well defined for these
values.

In the discrete okta state space, C, the distance between each pair of neighbouring
states is the same. However, in the continuous state space K , this is definitely not
given. In fact, the definition of the oktas [3] indicates that the end points of okta
pairs {0, 1}, {7, 8} ∈ C are more alike compared to the rest of oktas. Thus by moving
the end points of the okta scale closer together as in Fig. 6 before dividing by 8, we
might obtain a good transformation that behaves well. We thus choose the following
transformation for the cloud cover to get it into K :

κ = ζ(c) = c/8 , c ∈ C , κ ∈ K , (31)

where the oktas 0 and 8 have been perturbed according to Fig. 6. But how much
should we move the end points as to get the best model? To answer this question,
we use Akaike’s information criterion (AIC) as a measure to compare estimated
models. We perform a small grid search for the positions of oktas 0 and 8 around
the points 0.5 and 7.5 and choose the model that performs best in terms of the AIC
value.

To estimate the parameters in the SDE, we apply ML estimation using the
continuous–discrete extended Kalman filter (CDEKF), see, e.g., [10, 23]. We use
the CDEKF to predict from the SDE. Let θ denote the set of parameters in the
model. Given θ , we use the CDEKF to calculate the 1-step prediction and variance
of the state, κ̂k|k−1(θ) and Rk|k−1(θ). Let εk(θ) = κ̂k|k−1(θ) − κk be the prediction
error of the state using θ , and then the ML estimate is given by (9).

Table 4 shows the result of the grid search and suggests that the perturbation
(okta0, okta8) = (0.6, 7.4) is by far the best choice in terms of AIC—not
surprisingly, since we expected the end points to behave more like their neighbours.

Figure 7 shows histograms of the long-term distributions of the data and model 3
using the state transformation in Fig. 6 with the values (okta0, okta8) = (0.6, 7.4).

1 2 3
8

74 65
0

Okta

Fig. 6 An improved cloud cover transformation, ζ . Due to oktas 0 and 1, and okta 7 and 8,
supposedly being more alike compared to the other oktas, we propose the following transformation
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Table 4 The AIC value for
each combination of end
points in the grid search using
the model in (30)

Okta 0
Okta 8 7.40 7.45 7.50 7.55

0.50 21079 21432 22436 22557
0.55 21330 21591 21680 26515
0.60 20442 22817 23294 24994

Fig. 7 The long-term distribution of the data (left) and model 3 (right) using the improved state
transformation in (31) with oktas 0 and 8 moved to 0.6 and 7.4, respectively

Fig. 8 The autocorrelation
function of the 1-step
prediction residuals of model
using the okta transformation
as in (31)

Table 5 Parameter estimates for the model in (30) with the locations of oktas 0 and 8 moved to
0.60 and 7.40. p̂i , i = 1, . . . 7, is the parameter for the ith Legendre polynomial

Parameter p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 θ̂ σ̂

Estimate –53.1 14.6 –42.3 8.8 –58.1 –30.3 –45.7 0.187 0.835

Std. Err. 2.13 0.831 1.715 0.434 2.273 1.329 1.873 0.003 0.012

Even though the distributions are not identical, the model mimics the overall pattern
very well. The autocorrelation function in Fig. 8 is also close to zero as desired.

Table 5 shows the parameter estimates for the model. It can be hard to interpret
the model by simply looking at the parameters since the Legendre polynomial
parameters do not make much sense by themselves. Instead, we show the drift and
Lamperti drift functions of the cloud cover state in Fig. 9 to give an intuition of
the model. It truly has a very non-trivial and complex shape. It is partly the mean
value function, exp(P7(κ))/ (1 + exp(P7(κ))), and the reverting-speed function,
θ
√

κ(1 − κ), that makes this possible. The former allows the drift function to make
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Fig. 9 Left: The drift function of model 3 in (30) using the state transformation in (31). Right:
The same drift function, but in the Lamperti domain. The dashed line simply indicates the zero line

sudden changes from positive to negative and vice versa (which happens around
κ = 0.6 and κ = 0.9). The ladder makes sure that the drift goes to zero in both ends
and gives it the overall bending shape. The very sharp bend seen in the drift around
κ = 0.9 surely seems odd and out of place. But it has a crucial role in the long-term
distribution. It creates a stable stationary point for the process and therefore makes
the process stay in the overcast states for more time. This is especially visible in
the long-term distribution by the larger density in the overcast state compared to the
clear skies states.

The Lamperti drift is harder to interpret, as it lives in the logistic domain. But it
illustrates how the Lamperti process behaves and how the state dependence affects
it.

5.2 Solar Radiation

Now that we have established a model describing the cloud cover dynamics based
on SDEs, we move on to describe the next component of an advanced disturbance
model: the solar radiation. It is responsible for some of the fast heating dynamics
influencing the indoor air temperature and is thus an important disturbance.

5.2.1 Modification of the Cloud Cover Data

The data introduced in Sect. 5.1 are averages of multiple observations within an
hour, except for the cloud cover. The cloud cover value taken at time tk is thus not
representative for the cloud cover in the interval [tk, tk+1]. To obtain better estimates
for such cloud cover values, we use the average of the cloud cover at time tk and
tk+1

ck+1 = (c′
k+1 + c′

k)/2 , (32)
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where c′
k is the raw cloud cover data. The corrected cloud cover values live in the

state space ck ∈ {0, 0.5, 1, . . . , 8.5, 9}. We use these values for the cloud cover
throughout this section.

5.2.2 Solar Radiation Components and Modelling Approach

The term global solar radiation covers all the short-wave radiation at the surface of
the Earth. These are high-energy rays that transfer large amounts of energy that turns
into heat when absorbed by objects or electricity by the PVs. Previous modelling
attempts range from simple polynomial fits to complex black-box neural networks,
see, e.g., [15, 59, 60, 65]. The global solar radiation consists of two components:
diffuse and direct radiation. The direct radiation is all short-wave radiation travelling
undisturbed to the Earth’s surface. The diffuse radiation is all short-wave radiation
that is reflected from molecules in the atmosphere. The fundamental relationship is

φs(t) = IN(t) sin(α(t)) + ID(t) , (33)

where φs , IN , and ID are the global, direct, and diffuse radiation, respectively, and
α is the solar elevation angle. That is, obtaining models for each component gives
a model for the global radiation. Lambert–Beer’s law gives an analytical expression
for the intensity of the radiation when it arrives at the Earth’s surface

Iλ = I0λe
− ∫

μλ(s)ds , (34)

where I0λ is the initial intensity and μλ is the attenuation of the medium the ray
travels in. The integral in (34) is hard to evaluate since κaλ is difficult to estimate
for the atmosphere due to its very non-uniform density and dependence on the solar
elevation.

We shall employ a more data-driven approach, namely kernel regression [64]. It
estimates the conditional expectation, E(Y |X = x), of a variable. In our case, we
estimate the expected solar radiation given the cloud cover okta, c ∈ C, and the
solar elevation angle, α(t). Local linear regression has an advantage over constant
regression in that it generally induces less bias in the ends of the support. Figure 10
shows the direct radiation for some selected oktas (the diffuse radiation is omitted).
It shows that for larger oktas, the data seem more scattered—and behave very poorly
for okta 8.

Figure 11 shows the result of applying local linear kernel regression on the direct
and diffuse radiation data for each okta. The conditional expectations are in line with
the physical properties of the radiation types: The direct radiation is highest when
there is close to zero clouds, while the diffuse radiation tops for a certain presence
of clouds.
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Fig. 10 The direct radiation for some example oktas: 0, 2, 3, 5, 6, and 8

Fig. 11 The results from the kernel regression applied on the direct and diffuse radiation. For
simplicity, only half of the okta values are shown

5.2.3 Describing the Deviation and Autocorrelation

Now that we have described the conditional expectation, we move on to describe the
deviation and the potential autocorrelation left in the residuals. Figure 12 shows the
residuals of the kernel regression applied to the direct radiation (we omit the diffuse
radiation due to space limitation, but the behaviour is the same). It also suggests a
rough linear increase in the standard deviation is the case (the same is true for the
diffuse radiation). That is, we employ the following model for the standard deviation
for each okta:

σ (c)(t) = β
(c)
0 + β

(c)
1 α(t) , (35)

for both the direct and diffuse radiations. β
(c)
0 and β

(c)
1 are constant parameters

for each c ∈ C. Let ε
(c)
k = ŷ

(c)
k − y

(c)
k be the residual, and let

√
Rk = σ

(c)
k be

the standard deviation at time tk , k = 1, 2 . . . N , for okta c. The above sets of
parameters, {β(c)

0 , β
(c)
1 }, can be estimated using ML estimation as in (9) using a

numerical solver. The parameter estimates can be found in [61].
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Fig. 12 The residuals for the direct radiation

Fig. 13 The ACF for the direct and diffuse radiations

The cloud cover is not the single cause of variation in the solar radiation. For
example, vapour, dust, ozone, and other particles give rise to autocorrelation. Let

e(t) = ε̂(c)(t)

β̂
(c)
0 + β̂

(c)
1 α(t)

(36)

be the standardised residuals of the direct and diffuse data (i.e., two processes).
Note that each of the processes is standard normal distributed and independent of
the cloud cover. We consider the two processes as a multivariate time series with
the variable, ek = [

eN,k, eD,k

]T , with missing observations (during night-time). See
[38] for how to deal with missing observations in a time series. Figure 13 now shows
the autocorrelation in ek . The fast exponential decay in the first few lags suggests
that a first-order autoregressive (AR) model is necessary

ek =�ek−1 + εk ,

ak =ek + εa,k ,
(37)
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where � is the AR coefficients and εk ∼ N(0,Qe) and εa,k ∼ N(0,Ra) are the
process and observation noise, respectively. ek is thus the noise process driven by
its previous values and a noise term, εk . The observation equation (ref equation) is
a white noise process that encumbers the observations with noise, εa,k , which we
also need to estimate. We estimate the parameters by applying ML estimation and
use the Kalman filter to estimate the covariance matrices for the noise terms. The
results become

� =

⎡

⎢

⎢

⎣

0.609 0.109
(0.013) (0.009)

0 0.675
(0.010)

⎤

⎥

⎥

⎦

, Ra =

⎡

⎢

⎢

⎣

0.160 0
(0.011)

0 0.162
(0.019)

⎤

⎥

⎥

⎦

, Qe =

⎡

⎢

⎢

⎣

0.466 0.160
(0.019) (0.005)

0.160 0.456
(0.005) (0.016)

⎤

⎥

⎥

⎦

(38)
with the standard errors in parentheses beneath the estimate.

5.3 Net Radiation

The net radiation itself is not directly important for describing the heat dynamics of
a building. But it is an important meteorological variable that heavily influences the
ambient air temperature. The model for the ambient air temperature thus requires
a model for the net radiation. The net radiation, also known as the net flux, is the
balance of the total energy at the boundary of the atmosphere. It is simply the sum of
the total outgoing and incoming energy of the atmosphere. A negative net radiation
corresponds to more energy leaving the atmosphere and vice versa. In general, the
net radiation, Rn, is given by the analytical formula [2]

Rn = (1 − αg)φs + Lu + Ld , (39)

where αg is the albedo fraction and Lu and Ld are the upward and downward
components of the long-wave radiation. The albedo is the fraction of global solar
radiation that is reflected on the Earth’s surface into space, and (1 −αg) is therefore
the fraction of global radiation that is partly absorbed and that becomes long-wave
radiation.

Figure 14 shows the net radiation for a single March, which makes the depen-
dence on the time of the day clear. A simple and convenient model to use for our
purpose is the following, suggested by [37], which relies on the current cloud cover
and the global radiation

Rn(c(t), φs(t), t) = Kc + kcφs(t) + kα(t)2 + ε(t) , (40)

where Kc and kc are constants that are dependent on the present cloud cover and
α is the solar elevation. The model in (40) is linear in its parameters. This makes
linear least squares estimation useful to fit the parameters
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Fig. 14 The net radiation
during March

min
x

‖Ax − b‖2
2 , (41)

having the unique solution

x̂LS = (AT A)−1(AT b) . (42)

A and b in (41) have the forms

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

eT
c0

eT
c0

φs(0) h(0)2

eT
c1

eT
c1

φs(1) h(1)2

...

eT
ci

eT
ci
φs(i) h(i)2

...

eT
CN

eT
cN

φs(N) h(N)2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Rn(0)

Rn(1)
...

Rn(i)
...

Rn(N)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (43)

where N is the total number of observations and ei is a vector of zeros with a
one in the ith entry. ci is the cloud cover index of the ith observation—recall the
modified cloud cover data state space is {0, 0.5, . . . , 8.5, 9}. x is thus the parameters,
x = (K0,K0.5,K1, . . . , K9, k0, k0.5, k1, . . . , k9, k). Table 6 shows the estimated
parameters in (40). The increasing trend in constant net radiation, K̂c, with the
increasing amount of cloud cover indicates that the clouds ‘contain’ the net radiation
(net energy flux) within the atmosphere. This can be recognised by the phenomenon
that colder nights typically appear when the skies are completely clear.

5.4 Ambient Air Temperature

The only missing piece in the puzzle now in the advanced disturbance model is
the ambient air temperature. While the net radiation describes the net flux at the
boundary of the atmosphere, the following fundamental relationship describes the
heat fluxes: close to Earth’s surface
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Table 6 The estimated
parameters of the model in
(40). Even though we have
not imposed any
regularisation or other things
that tie the estimates together,
the values are somewhat
nicely distributed

Cloud cover okta K̂c k̂c σ̂ε k̂

0 –69.2 0.549 40.1 0.0418

0.5 –68.2 0.551 38.5 0.0418

1 –74.1 0584 38.3 0.0418

1.5 –74.9 0.576 37.7 0.0418

2 –74.1 0.571 39.7 0.0418

2.5 –75.5 0.566 45.2 0.0418

3 –73.6 0.565 48.4 0.0418

3.5 –71.5 0.566 54.4 0.0418

4 –73.6 0.589 58.1 0.0418

4.5 –67.5 0.606 57.9 0.0418

5 –69.5 0.661 59.8 0.0418

5.5 –63.6 0.695 60.7 0.0418

6 –56.5 0.717 59.7 0.0418

6.5 –46.5 0.699 56.7 0.0418

7 –29.5 0.595 49.4 0.0418

7.5 –13.5 0.461 43.5 0.0418

8 2.5 0.150 31.8 0.0418

Fig. 15 The hourly mean
values of the ambient air
temperature and the net
radiation during a day. The
delayed response from the
ambient air temperature
suggests that a dynamic
model is necessary

Rn = Lf + Sf + Gf , (44)

where Rn is the net radiation described in Sect. 5.3 and Gf is the soil heat flux. Lf

and Sf are the latent and sensible heat fluxes. The latent heat flux is heat gradients
related to absorbed or released heat due to phase changes by matter—e.g., when
water evaporates, it absorbs heat in order to decrease the molecule density. The
sensible heat flux is all energy required to change the temperature of matter without
phase changes taking place. The latent and sensible heat fluxes thus relate to the
gradients of the air temperature. To get an idea of the kind of model needed to
describe the air temperature, Fig. 15 shows the diurnal mean value variations of the
net radiation and ambient air temperature. It supports the fact that the net radiation is
an important explanatory variable to describe the air temperature. It further suggests
that a dynamical model is needed due to the time lag between the peak values of
3–4 h.
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Fig. 16 An illustration of the
dynamical model describing
the ambient air temperature.
The states are indicated by
the squares containing the
heat capacities

The atmospheric air directly above the Earth’s surface has a relatively small
heat capacity, making it quick to respond to level changes in the net radiation.
Water in contrast has a very large heat capacity. The temperature of the seas thus
highly regulates the temperature of the air above it. The air masses above sea and
land interact due to climatic motions, and the sea consequently regulates the land
air temperature. For instance, it is well known that the largest annual temperature
difference occurs in the middle of large continents. Hence, the level of regulation
by the sea depends on geographical location and local climate. Using the above
knowledge about the behaviour and balances of the air temperatures, we are ready
to formulate the stochastic dynamical model describing the ambient air temperature
above land

CwdTw(t) =
(

1

Rwl

(Tl(t) − Tw(t))

)

dt + σwdωw(t) , (45a)

CldTl(t) =
(

1

Rwl

(Tw(t) − Tl(t)) + 1

Rl∞
(T∞ − Tl(t)) + Rn(t)

)

dt + σldωl(t) ,

(45b)

T (tk) = Tl(tk) + vk, vk ∼ N(0, Rv) , (45c)

where Cw and Cl are the heat capacities for sea and land, Rwl and Rl∞ are the
resistances against the heat flows between the states, ωw and ωl are the standard
Wiener processes, and vk is the observation noise. The model is also illustrated in
Fig. 16: The solar radiation influences the net radiation, which in turn acts as an
input to the land air temperature. The land air temperature interacts with the sea
temperature and a constant outflow of energy, T∞, to counteract heat inputs and
to ensure stability of the model. Equation (45) thus uses the sea temperature as a
hidden state to describe the land air temperature.

Since this is a continuous-time model, we use the continuous–discrete Kalman
filter to calculate one-step predictions and estimate the observation variance to
compute one-step predictions and filter the estimates. Let x̂k|k−1(θ) and Rk(θ) be
the one-step prediction and observation variance for xk at time tk , calculated using
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Table 7 The parameter estimates in (45) and the corresponding standard errors

Parameter Ĉw Ĉl R̂wl R̂l∞ σ̂w σ̂l

Estimate 534.56 58.99 0.0145 0.1017 0.913 0.0003

Std. Error 8.44 0.49 0.0001 0.0026 0.0123 0.0001

a given set of parameters θ = (Cw,Cl, Rwl, Rl∞, σw, σl). Then, the ML estimate is
the solution to the problem in (9).

Using the data from Højbakkegård, Table 7 shows the estimation results for the
model in (45). As expected, the heat capacity for the sea is much larger compared to
the land air. Also note the very small process noise for the land air temperature,
ωl , compared to the sea temperature. This indicates that it is primarily the sea
temperature that drives the land air temperature.

6 Model-Based Predictive Control

The previous sections focused on establishing statistically determined dynamical
models for the smart building and the most important disturbances. This section
shows the potential benefits of using the advanced disturbance models for fore-
casting. We start by introducing model predictive control (MPC) and deriving the
optimisation problem involved with computing the optimal control. Furthermore,
we discuss how to incorporate and use the given disturbance forecasts in the MPC
algorithm. Lastly, we present a more classical method for handling disturbances in
an MPC setup, where the disturbances are not modelled but instead an integrator is
introduced to estimate the current disturbances. Even though the method provides
offset-free control, we discuss why it is not ideal when dealing with very fast
dynamics (as with the solar radiation).

6.1 Constrained Model Predictive Control

Many variations of MPC exist and have gained high popularity for control purposes
due to the framework’s superiority over non-predictive control schemes such as
PI/PID control [35] and its simplicity. In general, the MPC framework is given by
the following (Bolza) problem:

J (x̂k|k, {d̂k+i|k}i∈N ) = min
u

∫ tk+Np

tk

�(x(τ ),u(τ ), d(τ ))dτ + �b(x(tk+Np)),

(46a)

s.t. x(tk) = x̂k|k , (46b)
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d(t) = d̂k+i|k, t ∈ [tk+i , tk+i+1[ , (46c)

dx(t) = f (x(t),u(t), d(t))dt , (46d)

x(t) ∈ X(t) , u(t) ∈ U(t) , (46e)

where N = {0, 1, . . . , Np −1} is the control times and Np is the prediction horizon.
J is the cost function, x is the system, u is the input, and X(t) and U(t) are the
allowed sets for x and u. x̂k|k is the filtered estimate of x at time tk and acts as

the initial condition. {d̂k+i|k}i∈N is the sequence of disturbances, which in general
comes from outside of the MPC framework. In this text, we get it from the separate
disturbance model developed in the previous sections. �b is a cost on x on the
boundary of the time domain sometimes called a cost-to-go term.

The cost function in (46a) involves evaluation of an integral. In practice though,
a computer can only deal with discrete time. Consequently, the problem in (46) is
typically reformulated as a discrete problem (in the case of a linear system)

J (x̂k|k, {d̂k+i|k}i∈N ) = min
ûk

∑

i∈N

[

�k(x̂k+i+1, ûk+i , d̂k+i )
]

+ �Np(x̂k+Np) ,

(47a)

s.t. x̂k = x̂k|k , (47b)

d̂k+i = d̂k+i|k , (47c)

x̂k+i+1 = Adx̂k+i + Bdûk+i + Edd̂k+i , (47d)

x̂k+i+1 ∈ Xk+i+1 , ûk+i ∈ Uk+i , (47e)

i ∈ N , (47f)

where the subscript d in (47d) indicates that the matrices are discretised. We obtain
such a discrete system using, e.g., zero-order hold. That is, we assume that the
input variable is constant during each preferably small time sample u(t) = uk , for
t ∈ [tk, tk+1], k ∈ N . (47d) describes the dynamics of the system and provides the
so-called Kalman predictions given by the recursion. The disturbances, {d̂k+i|k}i∈N ,
are again obtained from the separate disturbance model. We let the cost-to-go term
be zero �Np(x̂k+Np) = 0. But it can be very important to include in some cases.
For example, when batteries are included, the controller will try to sell all stored
electricity (which we do not immediately want) since it minimises the cost. Unless
we include a cost-to-go term, that weights the value of the electricity left in the
battery [57].

The cost function is of crucial importance in terms of defining the behaviour
of the controller. It is important that it minimises a term that reflects the desired
behaviour and ensures stability. The latter is usually not a problem when dealing
with systems of slow dynamics such as the temperature of a building. Often the cost
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function is minimising some distance between a control variable and a set point.
For building climate control, the control variable can be the room air temperature
and the set point can be the desired temperature. Two common examples of cost
functions are the following:

Quadratic cost xT Qx + uT Ru , (48a)

Economic (linear) cost cT u . (48b)

The quadratic cost function typically minimises a relative weighting between the
variables and can provide a trade-off between the input and the regulation of
the system. The linear cost function measures an amount of some resource. In
temperature regulation of a building, it is often the energy consumption or price. But
in general, the resource is an abstract size and can also measure the CO2 emission
from electricity generation or even a generic penalty signal manually designed to
force a certain behaviour. For our purpose, we use economic MPC, while also
softening the constraints

J (x̂k|k,{d̂k+i|k}i∈N ) = min
ûk,ŝk

∑

i∈N
ck+i ûk+i +

∑

i∈N+
ρk+i ŝk+i , (49a)

s.t. x̂k = x̂k|k , (49b)

d̂k+i = d̂k+i|k , i ∈ N ,

(49c)

x̂k+i+1 = Adx̂k+i + Bdûk+i + Edd̂k+i , i ∈ N ,

(49d)

ŷk+i = Cdx̂k+i , i ∈ N+ ,

(49e)

ŷk+i − ŝk+i ≤ ymax,k+i , i ∈ N+ , (49f)

ymin,k+i ≤ ŷk+i + ŝk+i , i ∈ N+ ,

(49g)

�umin,k+i ≤ �ûk+i ≤ �umax,k+i , i ∈ N ,

(49h)

umin,k+i ≤ ûk+i ≤ umax,k+i , i ∈ N , (49i)

0 ≤ ŝk+i , i ∈ N+ , (49j)

where N+ = {1, 2, . . . , Np}, �ûmin,i and �ûmax,i are the minimum and maximum
allowed changes of input, and ŝi and ρi are the slack variable and slack penalty,
respectively. umax,i and umin,i are the upper and lower constraints on the input, and
ŷmax,i and ŷmin,i are the upper and lower constraints on the observed variables.
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The slack variable has the purpose of softening the constraints. That is, it allows the
solution to move outside of the constraints without making the problem infeasible—
but at a cost!

6.1.1 Rewriting the State Equations of the Optimisation Problem

We are now familiar with the objective of MPC and what the purpose of the
constraints is, but it is not directly clear how to write out the optimisation problem
such that we can implement it. First, we need to recognise that the variables of the
optimisation problem are the input and the slack variables, [uk, sk]. That is, we need
to write each constraint in (49) as an equation using uk and sk . To do this, we use
the Kalman predictions of the system to obtain a matrix expression for the states
for all prediction times in N . Writing out the observed system using the Kalman
predictions is

ŷk = Cdx̂k = Cd(Adx̂k−1 + Bdûk−1 + Edd̂k−1) ,

= CdAdx̂k−1 + CdBdûk−1 + CdEdd̂k−1 .
(50)

The state development for x̂k is again given by the Kalman predictions, where
x̂k−1 = Adx̂k−2 + Bdûk−2 + Edd̂k−2. Inserting this into (50) yields

ŷk = CdAd

(

Adx̂k−2 + Bdûk−2 + Edd̂k−2

)

+ CdBdûk−1 + CdEdd̂k−1 ,

= CdAd
2x̂k−2 + Cd(AdBdûk−2 + Bdûk−1) + Cd(AdEdd̂k−2 + Edd̂k−1) .

Continuing this approach until an initial state is reached (and shifting the time to
start at tk and end at tk+Np), the result is

ŷk+Np = CdAd
kx̂k + Cd

Np−1
∑

i=0

Ad
iBdûk+Np−1−i + Cd

k−1
∑

i=0

Ad
iEdd̂k+Np−1−i .

(51)
Let Ŷ k+1 be a vector containing the predictions Np steps ahead starting from

tk+1, Ŷk+1 = [ŷT
k+1, ŷ

T
k+2, . . . , ŷ

T
k+Np

]T . Then (51) shows how to formulate an

expression for ŷk+i for i ∈ N+ using a convenient matrix-vector notation

Ŷ k+1 = �x̂k + �U k + �D̂k , (52)

where
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� =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

CdAd

CdAd
2

CdAd
3

...

CdAd
Np

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, � =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

CdBd 0 . . . . . . 0

CdAdBd CdBd
. . . 0

CdAd
2Bd CAB CdBd

. . .
...

...
...

. . . 0
CdAd

Np−1Bd CdAd
Np−2Bd . . . . . . CdBd

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

U k =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

uk

uk+1

uk+2
...

uk+Np−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, � =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

CdEd 0 . . . . . . 0

CdAdEd CdEd
. . . 0

CdAd
2Ed CdAdEd CdEd

. . .
...

...
...

. . . 0
CdAd

Np−1E CdAd
Np−2Ed . . . . . . CdEd

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

D̂k =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d̂k

d̂k+1

d̂k+2
...

d̂k+Np−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(53)

6.1.2 Rewriting the Constraints in the Optimisation Problem

Now that we have an expression for ŷk+i , i ∈ N+, we are able to eliminate the
dependence on ŷk+i in the constraints. Starting with (49f)

Ŷ k − Sk+1 ≤ Ymax ,

⇒ �x̂k + �U k + �D̂k − Sk+1 ≤ Ymax ,

⇒ �U k − Sk+1 ≤ Ymax − �x̂k − �D̂k ,

where Sk+1 = {sk+i}i∈N+ is a vector with the slack variables. We can do the same
thing with the lower constraint for ŷk+i ,

− �U k − Sk+1 ≤ −Ymin + �x̂k + �D̂k . (54)

To rewrite (49h), we need the following transcription:
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⎡

⎢

⎢

⎢

⎣

�umin + u−1

�umin

...

�umin

⎤

⎥

⎥

⎥

⎦

≤

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I 0 · · · 0
−I I 0

0 −I I 0
...

...
. . .

. . .
. . .

. . .

0 −I I 0
0 · · · 0 −I I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

U k ≤

⎡

⎢

⎢

⎢

⎣

�umax + u−1

�umax

...

�umax

⎤

⎥

⎥

⎥

⎦

, (55)

where u−1 is the input given to the system at time tk−1, and I is the identity matrix
with the same size as the length of uk . Denoting the matrix in (55) by �, then the
constraint in (49h) is

−�U k ≤ −�Umin ,

�U k ≤ �Umax .
(56)

(49i) is straightforward in the sense that it requires no further notational introduction

−U k ≤ −Umin ,

U k ≤ Umax .
(57)

Finally, we demand the slack variables to be non-negative, −Sk+1 ≤ 0. We are now
able to write the problem in (49) as an expression of the input and slack variables

J = min
U k,Sk+1

[

CT
u P T

s

]

[

U k

Sk+1

]

s.t.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−� −I
� −I
−I 0
I 0

−� 0
� 0
0 −I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

U k

Sk+1

]

≤

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Ymin + �x̂k + �D̂k

Ymax − �x̂k − �D̂k

−Umin

Umax

−�Umin

�Umax

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(58)

where Cu = [cT
k , . . . , cT

k+Np−1]T and P s = [ρT
k+1, . . . , ρ

T
k+Np

]T are the elec-
tricity costs and the slack variable penalty, respectively. We have now written the
optimisation problem in (49) as a constrained linear program that gives us the
optimal input, Ûk

∗ = [û∗T
k , . . . , û∗T

k+Np−1]T , that minimises the cost J based on

initial conditions for the system, x̂k|k , and disturbance forecasts, {d̂k+i}i∈N . This
is referred to as optimal control. Figure 17 displays the overall MPC framework
and how the elements interact. Very often, for systems governed by uncertainty, it
is necessary to use a moving horizon scheme, where only the current optimal input
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Fig. 17 The MPC framework for the smart building and how the disturbance model is incorpo-
rated

is applied to the system, u∗
k . When arriving at the next time step, tk+1, the optimal

control problem is computed again and the current input is applied. This is known
as closed-loop feedback control and ensures stability of the system as the controller
can account for unforeseen uncertainty in the system between time steps. As this
is a linear in-equality constrained problem, a closed-form solution to (58) does not
exist in general. We therefore use numerical optimisation to find the unique solution
that exists due to convexity as long as the problem is well posed.

6.2 Offset-Free Control Without Separate Disturbance Model

In more conventional MPC setups where separately modelled disturbance models
are not feasible, there exist ways to deal with unforeseen disturbances. In practice,
parameter uncertainties, lack of model accuracy, and non-modelled disturbances all
usually necessitate some kind of action; otherwise, offsets can arise. For example,
if the disturbances act with a constant (or slowly varying) force, we can obtain a
non-zero distance between the system state and the desired set point. The literature
suggests multiple ways to deal with this [51, 52, 55], and this is still an active
research area. A popular method (among others) is known as the augmented
disturbance model. In practice, two variants are widely used and well studied:
the input and output disturbance models.

Morari and Stephanopoulos [47] derive some important concepts and results
regarding disturbance modelling for continuous-time systems in the deterministic
case. Consider a continuous-time linear state-space system of the form

dx(t) = (Ax(t) + Bu(t)) dt ,

yk = Cx(tk) ,
(59)

where x ∈ R
n, A ∈ R

n×n, u ∈ R
nu , B ∈ R

n×nu , and C ∈ R
ny . Note that the

disturbances are not a part of the model in the first place. The augmented disturbance
model approach assumes that the disturbances act on the system as integrated white
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noise; that is, we can add an integrator as an independent state, η ∈ R
nd in the

system by

dx(t) =
(

Ax(t) + Bu(t) + B̄η(t)
)

dt ,

dη(t) = �̄dω̄(t) ,

yk = Cx(tk) + C̄η(tk) ,

(60)

where B̄ ∈ R
n×nd and C̄ ∈ R

n×nd are the disturbances on the input and output
(hence the name). We shall assume Cd = 0 in the rest of this section. The case
when the disturbances only act on the system is called input disturbances because
it acts as an input on the system. We can augment the disturbance and obtain the
augmented system

d

[

x(t)

η(t)

]

=
([

A B̄
0 0

] [

x(t)

η(t)

]

+
[

B
0

]

u(t)

)

dt +
[

0
�̄

]

dω̄(t) ,

yk = [

C 0
]

[

x(t)

η(t)

]

.

(61)

Note that we are (obviously) not able to influence the disturbances and (in general)
know nothing about them. However, it is crucial for us to estimate them in order
to obtain offset-free control. Observability is an important concept that relates to
whether we are able to estimate all states in the given system, x, based on the
observed information we have, y. We say that the system (C,A) in (59) is observable
if

rank

⎡

⎢

⎢

⎢

⎣

CA
CA2

...

CAn−1

⎤

⎥

⎥

⎥

⎦

= n . (62)

In general, we are able to estimate all states in a system if and only if it is observable.
That is, we need to make sure that the augmented system in (61) is observable—
otherwise we cannot estimate the disturbances and in turn not obtain offset-free

control. The system

(

[

C 0
]

,

[

A B̄
C 0

])

is observable if and only if the following

requirements are fulfilled [47]:

1. The system (C,A) is observable.

2. rank

[

A B̄
C 0

]

= n + nd .



Model Predictive Control Based on Stochastic Grey-Box Models 367

This implies that we are able to insert at most ny (the number of independently
observed variables) integrators into the system while ensuring observability of
the augmented system. We can estimate the disturbance states simply by using
the Kalman filter or Luenberger observer [32] (treating them as any other hidden
state). This method also supplies disturbance forecasts by computing the predictions
supplied by the system. It is easy to see that it corresponds to zero-order disturbance
forecasts also called persistent forecasts, see, e.g., [38, p. 333] and [11]. For this
reason, the integrator approach works best when the disturbance dynamics are
slow—and not very well for faster dynamics such as the solar radiation for a smart
building. We will show this in the next section.

7 Predictive Control with Embedded Disturbance Models

We now combine the individual weather models in the previous sections into a
combined disturbance model framework. Ultimately, we want to show that by
modelling the disturbances, we can obtain more accurate control than using, e.g.,
augmented integrators. The advanced disturbance model should return a vector,
d(t) = [

dTa (t), dφs (t)
]T , containing the solar radiation and ambient air temperature.

Writing up all equations for the individual disturbances gives the following complete
description:

Cloud cover model

{

dZκ = fψ(Zκ)dt + σψdωκ

c = ζ−1(ψ−1(Zκ))

Solar radiation model
{

φs = IN(c, t) + ID(c, t)

Net radiation model
{

Rn = Rn(c, φs, t)

Air temperature model

{

dTw = fTw(Tl, Tw)dt + σwdωw

dTl = fTl
(Tl, Tw,Rn)dt + σldωl

Observations

⎧

⎪
⎪
⎨

⎪
⎪
⎩

dφs = φs + vφs , vφs ∼ N(0, Rφs )

dTa = Tl + vTa , vTa ∼ N(0, RTa )

d = [

dTa , dφs

]T
.

(63)

Since the disturbance model in (63) is based on SDEs, we are able to use
the CDEKF to compute certainty equivalent Kalman predictions—which MPC
requires. This procedure requires numerical solutions of coupled differential equa-
tions, which in turn requires initial conditions preferably from observations coming
from the building site in order to ensure accuracy. Due to the one-way coupling of
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the individual weather models, the computation of the predictions becomes much
easier, as it can be split into smaller and simpler calculations:

1. Compute the cloud cover predictions {ĉk+i|k}i∈N .
2. Compute the solar radiation predictions {φ̂s,k+i|k}i∈N .
3. Compute the net radiation predictions {R̂n,k+i|k}i∈N .
4. Compute the ambient air temperature predictions {T̂a,k+i|k}i∈N .

7.1 Comparison of Advanced Disturbance Forecasts and
Persistent Forecasts

All the necessary elements are now introduced for us to demonstrate how to control
the room air temperature of a smart building presented in Sect. 4 using the advanced
disturbance forecasts from (63). Additionally, we want to show that the great effort
put into modelling the disturbances actually improves the quality of the smart
building regulation. To do this, we compare the advanced disturbance forecasts
with a more typical and conventional kind of offset-free control that is explained
in Sect. 6.2. In this text, we use persistent forecasts, which are often used as a
reference model for weather and energy forecasting models. It uses the following
constant predictions:

d̂k+i|k = d̂k|k , i ∈ N . (64)

That is, we assume that all future disturbances equal the disturbance at the present
time, tk , and we assume that we actually observe them.

Figure 18 shows the persistent and advanced disturbance forecasts using a
prediction horizon of 96 h. The simplicity of the persistent forecasts becomes very

Fig. 18 The persistent forecasts against the advanced disturbance forecasts. The latter is computed
by integrating (63) forward using the current observations as initial conditions
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visible compared to the complex dynamics of the true disturbances. The advanced
disturbance forecasts are of course most accurate in a short future time span due
to the initial conditions. They then drift towards some stationary dynamics, highly
dictated by the stationary points of the cloud cover that can be seen in Fig. 9. We
therefore cannot hope to accurately forecast the disturbances 96 hours into the
future using these methods—instead they give expected disturbance values. For this
reason, the literature normally uses meteorological forecasts. They are, however,
less accurate for short-term predictions. [66] suggest that in practice, the advanced
disturbance forecasts work best 4–10 h into the prediction horizon and from that
point on meteorological forecasts in general perform better. The latter is based
on large systems of differential equations and is calculated using very powerful
computers. In practice, it is believed that a combination of short- and long-term
forecasts will be the best solution.

8 Simulation Results

As previously mentioned, we use data from March as the true disturbances acting
on the smart building. This gives us 7 months of data to simulate control of the
smart building using the two forecasting schemes. In this section, we show the
results of controlling the smart buildings presented in Sect. 4. Furthermore, we
present the results where the heat pump is combined with both electrical heaters
and air conditioners (for cooling). Recall that the heat pump is a factor 3 more
efficient compared to the electrical heaters, which makes it economically attractive
and interesting to combine.

All simulations in this section use a prediction horizon of 96 h, a time sample
of 1 hour, and temperature constraints Tr,min=20 C◦ and Tr,max=24 C◦ (which are
softened). We use the slack penalty suggested by [57], ρk = 5000. The electricity
price is taken from Nord Pool and is the average over all March data and equals to
ck = 0.27 · 10−3 EUR/Wh.

Figure 19 shows a 15-day sample of the 7 months of simulation for two smart
buildings: one using electrical heaters and one using a heat pump. The smart
building equipped with electrical heaters acts faster and is therefore more capable
of adjusting to sudden changes from the disturbances. This is borne out by the
electrical heaters that operate at a level that sets the room air temperature to the
lower constraint to minimise costs—except when the sun shines and additional heat
is not needed. The differences between two forecasting schemes are not greatly
visible from this sample, however, due to the effect of the control feedback every
hour.

The solution for the smart building equipped with a heat pump looks much
different. The overall dynamics are much slower. In contrast to the case with the
electrical heaters, the advanced disturbance forecasts seem to enable the controller
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Fig. 19 A 15-day sample of the total 7 months of simulation. It shows the indoor air temperature
and the heat input for the two scenarios at the same point in the time series of simulation. The black
dashed lines are the constraints
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Fig. 20 A 15-day sample of the total 7 months of simulation. It shows the indoor air temperature
and the heat input for the two scenarios where the heat pump is combined with faster heating inputs
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to much better keep the room air temperature on the right side of the constraints—
the baseline forecasts go above the upper constraint a couple of times during this
sample.

Figure 20 shows a 15-day sample of two extended smart buildings. The 3rd
scenario is a simulation of a smart building equipped with both a heat pump and
an electrical heater. This enables the smart building to heat efficiently using the heat
pump but also to make fast corrections using the electrical heaters. The 4th scenario
considers a smart building equipped with a heat pump and an air conditioner such
that it is also able to cool if necessary. Visible in both scenarios is the fact that
the advanced disturbance forecasts use the expensive electrical heaters and air
conditioners less often and are therefore able to obtain cheaper control.

In an attempt to draw asymptotic conclusions, we turn to consider how well
the forecasting schemes minimise the actual cost function in (49) of the entire
simulation of the 7 months, as this is what the solutions are based on. Table 8 shows
the constraint violations of the entire simulations corresponding to the second term
in (49a). Additionally, it shows the results for a controller that uses perfect forecasts:
this gives a theoretical upper boundary on the performance using the settings in
this chapter. The advanced disturbance forecasts seem to outperform the persistent
forecasts in all scenarios. Especially in the case of the heat pump alone: this is
perhaps the most realistic case—that houses equipped with a heat pump do not have
addition heating or cooling (at least in Denmark).

Looking at the cost term in (49a), Table 9 shows the total electricity cost
for all scenarios. It is obvious that the cost for the electrical heaters is almost
identical for all scenarios since the total heat needed is the same. In the heat pump
scenario, however, the advanced disturbance forecasts use much less electricity
compared with the persistent forecasts. This is also the case for scenarios 3 and
4—the advanced disturbance forecasts seem to offer a significant decrease in
electricity consumption and in general are very close to the perfect forecasts. This
is also visible from the simulation samples in Figs. 19 and 20 where the advanced
disturbance forecasts almost at all times lie below the persistent forecasts.

Table 8 The constraint violations (the second term in the cost function in (49a)) for all heating
strategies for each forecasting scheme

Constraint violation of the control simulations

Forecasting method Persistent Advanced disturbances Perfect

Scenario 1: Electrical heater 48.5 39.6 25.11

Scenario 2: Heat pump 157.9 12.3 1.7

Scenario 3: Heat pump plus electrical heater 48.0 6.7 1.2

Scenario 4: Heat pump plus AC 4.4 2.4 0
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9 Hierarchical Control

In the next section, we will first illustrate how the controllers described in the
previous sections can be considered as the low-level controllers of a multi-level
or hierarchical control setup for solving grid or ancillary service problems in future
smart energy systems. Subsequently, we shall briefly outline how these principles
can be generalised to multi-level and hierarchical control problems. This section will
also outline how to establish a connection between the multi-level control problems
and conventional electricity markets.

9.1 Two-level Control for Utilising Energy Flexibility

In the previous sections, it has been shown how to develop controllers for controlling
smart buildings according to forecasts of prices, weather conditions, and indoor
climate requirements. In this section, it will be explained how to leverage this
by generating prices that are used indirectly to control the demand of the smart
buildings. The basic concept is illustrated by Fig. 21, where a smart building,
from an external perspective, takes an input (price) and gives an output (demand).
Analysed in this way, a model, termed the Flexibility Function, can be developed
that predicts demand as a dynamic function of price. The Flexibility Function could
be any dynamic model. In [18], a linear model (finite impulse response model) is
suggested, but in [19], it is shown that a grey-box model using stochastic differential
equations is more appropriate.

Table 9 The electricity price in EUR (the first term in the cost function in (49a)) for all heating
strategies for each forecasting scheme

Electricity cost of the simulations

Forecasting method Persistent Advanced disturbances Perfect

Scenario 1: Electrical heater 303.2 302.2 302.0

Scenario 2: Heat pump 117.3 110.4 107.7

Scenario 3: Heat pump plus electrical heater 113.0 108.2 107.5

Scenario 4: Heat pump plus AC 117.9 108.3 107.5

Fig. 21 The demand of a
smart building can be
predicted as a function of
prices
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Fig. 22 Using a Flexibility Function to generate price signals and demand as control feedback

Once a Flexibility Function has been estimated, a second controller can be
formulated where the objective is to control demand according to some criteria,
and the decision variable is the price. As shown in Fig. 22, the Flexibility Function
can be used to generate prices according to some reference. Notice how the demand
acts as the feedback to the controller, closing the loop.

If FF is the Flexibility Function that takes prices as input and gives expected
demand as output, while rl is a reference load, then a naive upper-level optimisation
problem can be written as

min
Cu

(FF(Cu) − rl)
2. (65)

Obviously, it might be necessary to impose limits on how much the price can
change, requirements on the average value, and a more sophisticated optimisation
problem than the minimum variance formulation as discussed in [17]. Combining
this optimisation problem with the one presented in (58) reveals how the price
signal, Cu, couples the two in an elegant fashion
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Notice how the two optimisation problems are solved independently from
each other, thus preserving autonomy and privacy for the building owners while
simultaneously allowing an aggregator to utilise the energy flexibility. In practice,
there are going to be a lot of smart buildings for each aggregator that all have
independent control problems. This method scales well to this case since the
computational burden for the upper level remains constant—with the Flexibility
Function simply representing the aggregated response from the smart buildings.

In [29], it is shown how the Flexibility Function can be used to generate a
Flexibility Index for a building.

9.2 Multi-Level Control and Markets

Ultimately, the purpose of the future smart-energy system is to establish a con-
nection between the controllers operating at local scales and high-level markets
operating at large scales. Essentially, a spectrum of all relevant spatial aggregation
levels (building, district, city, region, country, etc.) has to be considered. At the same
time, control or market solutions must ensure that the power system is balanced
at all future temporal scales. Consequently, data-intelligent solutions for operating
flexible electrical energy systems have to be implemented on all spatial and temporal
scales.

To address these issues, several solutions have been proposed in the literature in
recent years. These major solutions are transactive energy, peer-to-peer, and control-
based solutions, as described in [13].

Traditionally power systems are operated by sending bids to a market. However,
in order to balance the systems on all relevant horizons, several markets are needed.
Examples are day-ahead, intra-day, balancing, and regulation markets. The bids are
typically static consisting of a volume and duration. However, we believe that we
need a disruption related to principles for activating low-level flexibility.

Given all the bids, the so-called supply and demand curves for all the operated
horizons can be found. Mathematically, these supply and demand curves are
static and deterministic. Merit order dispatch is then used to optimise the cost
of generation. However, if the production is from wind or solar power, then the
supply curve must be stochastic, and the demand flexibility has to be described
dynamically, by the introduced Flexibility Function. Consequently, we need to
introduce new digitised markets that are dynamic and stochastic. And instead
of using a large number of markets for different purposes (frequency, voltage,
congestion, etc.) and on different horizons, we will suggest to use concepts based
on the Flexibility Function and stochastic control theory, exactly as described in
the previous section for the two-level case. We call this a Smart-Energy Operating
System (SE-OS) [36, 44, 45].

If we zoom out in space and time, i.e., consider the load in a very large area on a
horizon of days, or maybe next day, then both the dynamics and stochasticity can be
eliminated, and hence, we can use conventional market principles as illustrated in
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Fig. 23 Hierarchical control and markets

Fig. 23. If we zoom in on higher temporal and spatial resolutions (like for instance
a house), the dynamics and stochasticity become important, and consequently, we
will suggest to use the control-based methods for the flexibility as discussed in this
chapter.

The total setup consists of a combination of all these options, and the best option
depends on the zoom level. The conclusion is that we need new future digitised
refined market principles, which operate as a hierarchy of conventional market-
based bidding and clearing on the higher levels and control-based approaches on
the lower level—see Fig. 23.

All these principles for forecasting, control, and optimisation are included in
the so-called Smart-Energy Operating System (SE-OS), which is used to develop,
implement, and test solutions (layers: data, models, optimisation, control, com-
munication) for operating flexible electrical energy systems at all scales. See
[14, 36, 44, 45] for further information.

10 Summary

In this chapter, we have presented methods for modelling relevant for the con-
trol of smart buildings. Specifically, we have introduced the grey-box modelling
framework, and we have used this modelling framework to establish models for a
building—as well as for some of the most important weather-related disturbances—
namely cloud cover, solar radiation, net radiation, and ambient air temperature.
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Most importantly, the grey-box principle bridges the gap between models based on
first principles (physics) and models based on information obtained from the data
(statistics).

Further, methods for model development are suggested. For parameter estima-
tion, we suggest using the maximum likelihood method as this method allows for
an integrated estimation of parameters related to the embedded description of the
stochastic part.

Having models for the buildings and disturbance models as stochastic differential
equations enables and promotes the use of model predictive control (MPC) as the
regulation scheme for the indoor air temperature. MPC is widely described and
used in the literature for building climate control problems. We introduced and
formulated the mathematical optimisation problem involved with MPC and showed
how to numerically compute the optimal control solution. We explained the problem
of dealing with disturbances in control and showed how to incorporate them—both
by simple means (using an augmented integrator) and by embedding the advanced
disturbance models to supply forecasts. The last section presented simulation-based
results of MPC applied to the presented smart building models using different
heating strategies. The obtained results strongly suggest that the use of sophisticated
disturbances models over conventional methods to supply weather forecasts can
improve the building climate control.

Lastly, we have briefly explained how energy flexibility can be leveraged
through price-based control, by utilising a two-level framework in which prices are
generated by a controller to actuate the energy flexibility of the smart buildings.
These principles are generalised to multi-level controllers for solving all types of
ancillary and balancing service problems in future weather and data-driven energy
systems.
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