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a b s t r a c t

We consider the importance of correctly specifying the variance–covariance matrix to
allow information to be shared between aggregation levels when reconciling forecasts
in a temporal hierarchy. We propose a novel framework for parametric modelling of the
variance–covariance matrix, along with an iterative algorithm for maximum likelihood
estimation. The covariance between aggregation levels can be modelled by aggregating
the lower-level errors and disaggregating information from the higher levels. Using
the likelihood approach, statistical inference can be applied to identify a parsimonious
parametric structure for the variance–covariance matrix. We test and discuss different
structures for how forecast errors are connected across aggregation levels and present
a framework for simplifying these structures using Wald and likelihood-ratio tests. We
evaluate the proposed method in a simulation study and through an application to day-
ahead electricity load forecasting and find that it performs well compared to optimal
shrinkage estimation.
© 2022 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
1. Introduction

Real-life decision problems often involve forecasts for
ultiple levels of a hierarchy. During the last decade,

he reconciliation of hierarchical forecasts has received
lot of attention from the forecasting community—from
ractitioners and academics alike. Reconciliation ensures
nified predictions that support aligned decisions across
ll levels of a hierarchy, whether cross-sectional, tempo-
al, or cross-temporal. Similar to forecast combination in
eneral (Clemen, 1989; Timmermann, 2006), the process
f reconciling forecasts frommultiple aggregation levels is
ften beneficial, leading to improvements in forecast ac-
uracy and/or a reduction in forecast error variance (Hol-
yman et al., 2021).

In addition to the practical motivation and beneficial
roperties, forecast reconciliation has become popular be-
ause it is easy to apply. It is accomplished by linearly
ombining all forecasts for a hierarchy to a set of adjusted
ottom-level forecasts, which make use of all available
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information, and then aggregating these to reconciled
forecasts for the entire hierarchy (Pritularga et al., 2021).
This is intuitively better than simply aggregating forecasts
from the bottom or disaggregating from the top level
of a hierarchy, as has traditionally been done to ensure
coherency (Athanasopoulos et al., 2009; Gross & Sohl,
1990). It is a model-independent and flexible approach
that does not require all forecasts to come from a specific
model or the same model. In fact, the forecasts do not
even have to come from a model but could be entirely
judgemental.

Temporal reconciliation has been successful in nu-
merous energy applications where data are characterised
by seasonal patterns, such as electricity load (Nystrup
et al., 2020), heat load (Bergsteinsson et al., 2021), wind
power (Jeon et al., 2019), and solar power forecasting (Yang
et al., 2017). A lot of effort has been and is still being
devoted to understanding when and why forecast recon-
ciliation works and how it can be further improved (Di
Fonzo & Girolimetto, 2022; Hollyman et al., 2021; Nystrup
et al., 2021; Panagiotelis et al., 2021; Pritularga et al.,
2021).

In what follows, we consider the importance of cor-
d inference in temporal hierarchies. International Journal of Forecasting

rectly specifying the variance–covariance matrix to allow
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for information to be shared between aggregation levels
when reconciling forecasts in a temporal hierarchy. To
illustrate this, we first consider an example where the
actual variance–covariance matrix is known. In real-life
applications it has to be estimated from the data avail-
able, which is difficult given its often high dimension
and unknown structure. To this end, our contribution is
to propose a novel framework for parametric modelling
of the variance–covariance matrix, along with an itera-
tive algorithm for maximum likelihood estimation. The
covariance between aggregation levels is modelled by
aggregating the lower-level errors and disaggregating in-
formation from the higher levels. Using the likelihood ap-
proach, we show how statistical inference can be applied
to identify a parsimonious parametric structure for the
variance–covariance matrix. We test and discuss different
structures for how forecast errors are connected across
aggregation levels and present a framework for simplify-
ing these structures using Wald and likelihood-ratio tests.
We evaluate the proposed method in a simulation study
and through an application to day-ahead electricity load
forecasting.

The outline of this article is as follows. We discuss
elated work in Section 2. In Section 3, we consider a
imple example that illustrates the importance of cor-
ectly specifying the variance–covariance matrix. The like-
ihood approach is described in Section 4, including the
odel formulation and estimation setup. The framework

or model reduction and shrinkage is introduced in Sec-
ion 5. Results from the application to load forecasting are
hown in Section 6. Section 7 presents a simulation study
ased on the load data, focusing on situations where the
umber of parameters in the variance–covariance matrix
s high compared to the number of observations available
or estimation. Finally, Section 8 concludes.

. Related work

The reconciliation of hierarchical forecasts was first
ormulated as a linear regression problem by Hyndman
t al. (2011), who used ordinary least squares (OLS) re-
ression to reconcile forecasts for a cross-sectional hier-
rchy. Hyndman et al. (2016) proposed to use weighted
east squares (WLS) regression instead, in order to take
nto account differences in the variances of the base fore-
ast errors. Subsequently, Athanasopoulos et al. (2017)
howed that the same approach can be used to produce
oherent forecasts for temporal hierarchies, as temporally
ggregated time series can be represented as hierarchical
ime series.

Wickramasuriya et al. (2019) found that the inclusion
f covariance information through generalised
east-squares (GLS) regression was beneficial for forecast
ccuracy in a cross-sectional hierarchy when combined
ith a linear shrinkage estimator. Similarly, Nystrup et al.
2020) showed that accuracy can be significantly im-
roved across all aggregation levels in a temporal hierar-
hy by accounting for auto- and cross-covariances when
econciling forecasts.

The reconciliation weights are uncertain and must be
stimated. This was illustrated by the recursive shrink-
ge approach employed by Bergsteinsson et al. (2021)
2

to estimate time-varying weights capturing seasonality
in the forecast errors. Uncertainties propagate from the
variance–covariance matrix estimation to the reconcili-
ation weights. Although the reconciled forecasts will be
coherent as long as the reconciliation weights meet the
coherency constraints, they might not be optimal. Pritu-
larga et al. (2021) argued that the effect of uncertainties
in forecast reconciliation has been overlooked. The uncer-
tainty of reconciled forecasts comes from the incoherent
base forecasts and propagates to the estimated recon-
ciliation weights, which increases the uncertainty of the
reconciled forecasts.

In general, the variance–covariance matrix for the co-
herency errors is unknown and unidentifiable. Wickrama-
suriya et al. (2019) provided theoretical justification for
using the variance–covariance matrix for the base forecast
errors as a proxy. A lot of work has gone into proposing
and justifying different projections of base forecasts onto
the coherent subspace, spanning from data-independent,
structurally motivated approximations (Athanasopoulos
et al., 2017) to approaches based on estimates of the
full empirical variance–covariance matrix (Nystrup et al.,
2020). Eckert et al. (2021) proposed a Bayesian approach
to identify and shrink coherency errors that enables the
inclusion of prior information.

As discussed by Pritularga et al. (2021), the accuracy
improvement from forecast reconciliation depends on the
quality of the estimated projection. At the same time,
more complex approximations increase the variance of
the reconciled forecasts. Nystrup et al. (2021) showed
that due to the redundancy inherent in temporal hier-
archies, the dimension of the estimation problem can
be significantly reduced without lowering the accuracy
of the reconciled forecasts. Unlike previous approaches
to estimating or approximating the variance–covariance
matrix for forecast reconciliation, we propose a statistical
modelling and inference approach based on likelihood
principles that can be applied to identify a parsimonious
parametric structure.

3. Motivating example

A fundamental motivation for forecast reconciliation
is that information from different aggregation levels is
beneficial for all levels of a hierarchy. Even if we were only
interested in a single level, it may be beneficial to create
forecasts for other levels as well and reconcile them. One
obvious reason for this is that in real-life applications
the data-generating process is unknown, and models are
prone to misspecification. The data-generating process is
often a complex non-linear function with time-varying
coefficients and combinations of (possibly higher-order
and seasonal) auto-regressive and moving-average terms
that is approximated by a lower-order linear model.

In order to illustrate the importance of correctly defin-
ing the full variance–covariance matrix, we consider a
motivating example. Suppose that the data-generating,
half-yearly process is a second-order auto-regressive,
AR(2), process:
H H H H H 2
yt+1 = φ1yt + φ2yt−1 + ϵt+1; ϵt+1 ∼ N(0, σ ). (1)
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In order to mimic the misspecification that happens in
ractice, we adopt AR(1) models for the half-yearly level
nd the aggregate, annual level. The process is observed
t the bottom, half-yearly level at t = {1, 2, . . .} and
he aggregate, annual process is observed at times 2t =

2, 4, . . .}. For each observation of the annual process,
orecasts are made two steps ahead at the half-yearly
evel and one step ahead at the annual level.

The data-generating process for the top, annual level
s
A
2t+2 = yH2t+1 + yH2t+2, (2)

which can also be written as an ARMA(2,1) process
(Amemiya & Wu, 1972). We use the formulation above to
emphasise the hierarchical structure of the problem. Our
models for the two levels are

yA2t+2 = φ̃AyA2t + ϵA
2t+2, (3)

yHt+1 = φ̃HyHt + ϵH
t+1. (4)

Although both models are misspecified (excluding the
special case where φ2 is zero, in which case only the
annual and not the half-yearly model is misspecified), it
seems reasonable that the annual level contains informa-
tion about the half-yearly level and vice versa. The esti-
mated coefficients in the models are the auto-correlation
at lag one for each process.

We can write the process for the observations as

y2t+2 =

⎡⎢⎣yA2t+2

yH2t+1

yH2t+2

⎤⎥⎦ = Φ

[
yH2t−1

yH2t

]
+ Φϵ

[
ϵH
2t+1

ϵH
2t+2

]
, (5)

where the matrices Φ and Φϵ can be derived directly
from the process definition. The details of the deriva-
tions and the exact forms of the matrices are shown in
Appendix A.

The model forecast can be written in a similar way as
follows:

ŷ2t+2|2t = Γ

[
yH2t−1

yH2t

]
, (6)

where the elements of Γ are determined by the auto-
correlations of the half-yearly and annual processes (see
(A.5)). Here the random variable ŷ2t+2|2t = E[y2t+2|y2t ] is
the conditional expectation of the forecast.

With the formulation above we can find the predictive
variance–covariance matrices

Σ = V [y2t+2 − ŷ2t+2|2t ], (7)

Σ̃ = V [y2t+2 − SPŷ2t+2|2t ], (8)

where S is the summation matrix (see (12) for an exam-
ple), P is given by

P = (STΣ−1S)−1STΣ−1, (9)

and Pŷ2t+2|2t is the reconciled forecast (Wickramasuriya
et al., 2019).

Note that since we know the data-generating process,
the variance–covariance matrices for the errors of the
base and reconciled forecasts can be calculated from the

process parameters, as shown in Appendix A. Hence, they e

3

do not have to be estimated in this example. The error in-
troduced by estimating the parameters—i.e. by replacing
Σ with Σ̂—is considered in the supplementary material
for this article (Møller et al., 2022).

3.1. Accuracy measurement

To compare the accuracy in the simulation and case
studies, we use the relative root mean square error:

RRMSE =

(
RMSErec − RMSEbase

RMSEbase

)
· 100% (10)

where subscripts rec and base refer to the reconciled
and base forecasts, respectively. The RRMSE was rec-
ommended by Hyndman and Koehler (2006) and has
been used frequently in studies on forecast reconcilia-
tion (Athanasopoulos et al., 2017; Nystrup et al., 2021,
2020). The RRMSE can be calculated for each aggregation
level and each forecast horizon within each level.

The RMSE is basically an estimate of the standard
deviation of the forecast error at a specific level (and
horizon). Therefore, it is natural to use what we will refer
to as the relative standard deviation as a measure of the
improvement compared to the base forecast:

RSdi =

(
σ̃i − σi

σi

)
· 100%, (11)

here σi and σ̃i are the standard deviations of the base
nd reconciled forecast errors, to compare the effect of
econciliation for different choices of φ1 and φ2.

Fig. 1 compares the improvements in terms of RSdi
s a function of φ2 for two choices of Σ when φ1 =

.75 and σ 2
= 1: the full (and correct) Σ and one

onstructed by ignoring cross-correlation. The figure also
hows the improvement we could obtain if we knew the
ata-generating process.
For this specific choice of φ1 (and for a range of φ2), the

ariance of the forecast error at the annual level always
mproves. The largest improvements occur when Σ is
orrectly specified. At the half-yearly level, the variance
ctually increases when the correlation structure is not
orrectly specified. It is particularly interesting to note
hat when φ2 is zero and the half-yearly model is equal
o the data-generating process, the variance at the half-
early level increases compared to the base forecast. For
range of φ2 around zero, the variance of the reconciled

orecast is very close to that of the perfect forecast using
he data-generating process.

For most choices of φ2, the residuals from the AR(1)
odel at the annual level contain additional informa-

ion that can be used to improve forecasts at the half-
early level through reconciliation. This illustrates the
enefit of reconciliation. Even in this simple example,
n order to unfold the full potential of reconciliation,
he variance–covariance matrix for the combined vec-
or of both forecasts is needed. In a real application,
here the data-generating process is unknown, we would
eed to estimate Σ , which would introduce an additional
stimation error (see Møller et al., 2022).
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4. Model formulation and likelihood estimation

The main contribution of this article is to develop a
ramework for modelling and estimatingΣ , the variance–
covariance matrix of the base forecast errors. Its often
high dimension and unknown structure makes the es-
timation problem difficult and calls for tools for testing
and simplifying its structure. To this end we develop an
algorithm for likelihood estimation and model selection
through statistical hypothesis testing. We formulate a
statistical model using the framework of general linear
models to arrive at a likelihood function. In order to
find the maximum likelihood estimates in an efficient
way, we derive the first and second derivatives of the
log-likelihood with respect to the model parameters. The
statistical tests in Section 5 follow directly from usual and
well-known approximate results from likelihood theory.
We begin by introducing our notation.

4.1. Notation

We use the following notation for the main variables,
for a specific forecast. That is, we will have an index on
some of them when we discuss the modelling:

• ŷ ∈ Rn is the collection of base forecasts for all
aggregation levels,

• ỹ ∈ Rn is the collection of reconciled forecasts for all
aggregation levels,

• y ∈ Rn is the observations for all aggregation levels,
• S ∈ Rn×m is the summation matrix,
• e ∈ Rn is the base forecast error,
• Σ ∈ Rn×n is the variance–covariance matrix of e,
and

4

• Σ̂ ∈ Rn×n is an estimate of the variance–covariance
matrix of e.

The base forecast ŷ is treated as a known input to the
system, which should be reconciled to give a coherent
forecast; the reconciled forecast ỹ is a linear function of ŷ;
is the collection of the actual observations; and the base

orecast error is e = y − ŷ. Finally, S is the summation
atrix that ensures aggregate coherency between the

orecasts, which implies that

• ỹ = SỹB ; ỹB ∈ Rm,
• y = SyB; yB ∈ Rm,

here subscript B refers to the forecasts or observations
t the bottom level. There are 1, . . . , K aggregation levels,
ith ŷ1 = ŷB ∈ Rm being the base forecast at the
ottom level. The dimensions of the other base forecasts
re defined by the aggregations.
As a small example, consider forecasts with quarterly,

alf-yearly, and annual resolution and a forecast horizon
qual to one year. In this case, y = [yA1 , y

H
1 , yH2 , yQ1 , yQ2 , yQ3 ,

Q
4 ]

T , and similarly for ŷ and ỹ. The base forecast for the
ottom level is ŷB = [ŷQ1 , ŷQ2 , ŷQ3 , ŷQ4 ]

T , and the summation
atrix is given by

=

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (12)
0 0 0 1
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Though there are multiple ways to define a summation
matrix, in all cases its columns span the same coherent
subspace, which is unique (Panagiotelis et al., 2021).

4.2. General linear model

Forecast reconciliation can be formulated as a general
inear model:

ˆ = Sb + ϵ, (13)

here b can be interpreted as b = E[yB]. Assuming that
∼ N(0,Σ ϵ) and Σ ϵ ∈ Rn×n is known, the reconciled

orecasts, which are considered parameters in a linear
egression model, can be estimated by

˜B = b̂ = (STΣ−1
ϵ S)−1STΣ−1

ϵ ŷ. (14)

his leaves the problem of estimating the (possibly high-
imensional) variance–covariance matrix Σ ϵ . The param-
ters in Σ ϵ cannot be estimated by maximum likelihood
stimation directly, because the rank of the estimated

ϵ is lower than its dimension. It is well known in re-
ression analysis that this is a consequence of treating
he reconciled forecasts as parameters (see, e.g., Madsen
Thyregod, 2011). This is also addressed in the sup-

lementary material for this article (Møller et al., 2022).
herefore, an estimate of the variance–covariance of the
bserved base forecast error is often used instead. Wick-
amasuriya et al. (2019) provided theoretical justification
or this approach.

The variance–covariance of the base forecast error et ,
here t = {1, . . . , T }, may be observed directly from
he data; but this involves estimating n(n+1)

2 parameters,
where n is the dimension of et . When perceived as a gen-
eral linear model, the reconciled forecasts are parameters
and ϵt is the residual error. The variance of et , Σ , is as-
sumed to be a good proxy for V [ϵt ] = Σ ϵ . Consequently,
in this model we set Σ ϵ = Σ and, in practice, we use
ome estimate Σ̂ .
In the small example above,Σ has 7·8/2 = 28 param-

eters. In the main application we consider in this article,
the number of parameters is 60 · 61/2 = 1830. A number
f approaches have been proposed in order to deal with
his high-dimensional problem, ranging from diagonal ap-
roximations (Athanasopoulos et al., 2017) to shrinkage
stimates of the full observed variance–covariance ma-
rix (Nystrup et al., 2020). Here, we investigate a setup
here the variance–covariance matrix is modelled using
hypothesis on the inverse variance–covariance matrices
nd summation matrices estimated using the maximum
ikelihood approach.

.3. Model formulation

Next, we present the framework for parametric mod-
lling of the variance–covariance matrix, which is the
ain contribution of this article. More technical issues

elated to parameter estimation are presented in Sec-
ions 4.4 and 4.5. The idea is that the covariance between
ggregation levels can be modelled by aggregating the
ower-level errors and disaggregating information from

he higher levels.

5

Covariances between aggregation levels arise because
data are shared between levels through the summation
matrix. We construct the full variance–covariance matrix
based on this data sharing. Starting from the bottom level,
we define (omitting the index t)

ϵ1 = u1 ; u1 ∼ N(0,Σ 1), (15)

ϵ2 = S21u1 + u2 ; u2 ∼ N(0,Σ 2), (16)

ϵ3 = S31u1 + S32u2 + u3 ; u3 ∼ N(0,Σ 3), (17)
...

ϵK =

K−1∑
j=1

SKjuj + uK ; uK ∼ N(0,ΣK ), (18)

where Cov[ui, uj] = 0, (i ̸= j).
The variance–covariance matrices Σ i can be thought

of as the within-level variance–covariance matrices, or as
some parameterised estimate of the variance–covariance
matrices. The dimension of ui is equal to the dimension
of the forecast at aggregation level i, with u1 ∈ Rm. The
matrices S ij define the covariance between levels. S ij is
not equal to the summation matrix S . They are related,
however, and particular hypotheses about how they are
related can be formulated directly through the structure
of S ij. Although it seems reasonable that they are de-
fined by the sharing of observations between aggregation
levels, it is not a requirement.

Continuing the small quarterly-to-annual example from
above, we have ΣQ ∈ R4×4, ΣH ∈ R2×2, and ΣA ∈ R.
Further, SHQ ∈ R2×4, SAQ ∈ R1×4, and SAH ∈ R1×2.
Assuming S ij is defined by the sharing of observations—
i.e. that the estimate for the first half year is related to
the first two quarters, the second half year to the last two
quarters, and so on—we would expect that the parametric
form is

SHQ =

[
β

HQ
11 β

HQ
12 0 0

0 0 β
HQ
23 β

HQ
24

]
, (19)

SAQ =
[
β

AQ
11 β

AQ
12 β

AQ
13 β

AQ
14

]
, (20)

SAH =
[
βAH
11 βAH

12

]
, (21)

where βkl
ij are parameters to be estimated from the data.

Of course, the variance–covariance matrices must also
be estimated. While it is not reasonable to assume that
the variance–covariance matrices are well approximated
by sparse matrices, it is often reasonable to assume that
their inverse is. This is, for example, the case for low-
order AR processes, which are often good approximations
of high-order AR processes. Therefore, we define S ii such
that

Σ−1
i = S iiST

ii , (22)

where S ii is an upper triangular matrix

S ii =

⎡⎢⎢⎢⎢⎣
αi
11 αi

12 · · · · · · αi
1n1

0 αi
22 αi

23 · · · αi
2n1

...
. . .

...
i

⎤⎥⎥⎥⎥⎦ . (23)
0 · · · αni,ni



J.K. Møller, P. Nystrup and H. Madsen International Journal of Forecasting xxx (xxxx) xxx

t
a
d
W
W
c
e

s
T
s
d
m
o

p

p
d
m
F
t

a
a

Fig. 2. Illustration of the parameters in some of the tested models for a quarterly-to-annual hierarchy.
This is a Cholesky decomposition ofΣ−1
i . IfΣ−1

i is sparse,
hen so is S ii. If, for some reason, it is reasonable to
ssume that Σ i is sparse but its inverse is not, then the
erivation done in this section should be redone, and the
ishart distribution should be replaced by the inverse
ishart distribution in Section 4.4. If neither Σ i nor Σ−1

i
an reasonably be assumed to be sparse, then one has to
stimate all values of αi

kl.
In Fig. 2, the setup is illustrated for three different

tructures for the small quarterly-to-annual example.
hese structures are chosen to explain the models con-
idered in Section 6. The first column (Full-Full) is a
ifferent representation of the full variance–covariance
atrix with the same number of parameters. In the sec-
nd column (Full-1), the variance–covariance of ui is free,

but the matrix SHQ is restricted (one extra parameter per
row, compared to (19)). This implies that the number of
parameters is reduced by two in this small example. Fi-
nally, in the third column (NULL), the variance–covariance
of ui is restricted to an AR(1) process, and only elements
of S ij directly related through data sharing are different
from zero. In other words, S ij is captured by just one
arameter.
The three structures in Fig. 2 have 28, 26, and 15

arameters, respectively. In this small example, the re-
uction in the number of parameters is not large. For
ore realistic examples the reduction will be much larger.
or example, in the case we consider in Sections 6 and 7,
he number of parameters will be 1830, 930, and 140.

It is expected that S ii is sparse in many cases. For ex-
mple, for the stationary AR(1) process only the diagonal

−1
nd one-lag off-diagonal elements of Σ i are different

6

from zero. Hence, in that case αi
kl = 0 for l − k > 1.

Furthermore, in the case of a stationary AR(1) process, we
would have αi

kk = αi
ll and αi

k,k+1 = αi
k+1,k+2, which drasti-

cally reduces the number of parameters. In the continued
investigation we will suppress the superscript of α and β .

We can write the model for the variance–covariance as

⎡⎢⎢⎣
ϵK

...

ϵ1

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
I SK ,K−1 · · · · · · SK ,1

0 I · · · SK−1,1

...
. . .

...

0 · · · I

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
uK

...

u1

⎤⎥⎥⎦ , (24)

where the variance–covariance matrix for u = [uT
K , . . . ,

uT
1]

T is block diagonal.
As short-hand notation we will write

ϵ = Suu; u ∼ N(0,Σ u), (25)

and

V [ϵ] = SuΣ
uST

u . (26)

The final model for the residual of the forecast errors
is

ϵ ∼ N(0, SuΣ
uST

u ), (27)

where Σ u is a function of α, and Su is a function of β.
It should be emphasised that (15)–(18) define a repre-

sentation of the observed variance–covariance matrix. In
particular, if all values of S ii and S ij are properly adjusted
(corresponding to the Full-Full model in Fig. 2), then

the model is just another representation of the observed
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variance–covariance matrix. This is often referred to as a
saturated model. We use the representation for maximum
likelihood estimation of the parameters, defining S ii and
S ij.

4.4. Likelihood estimation

In order to formulate an estimation problem, we need
to define a loss function or a distance between the pa-
rameterised version of the variance–covariance matrix
and the observed one. As we assumed a specific dis-
tribution of all errors, it is natural to use a likelihood
approach. In a univariate setting (i.e. yi ∼ N(µ, σ 2)),
the empirical variance is related to the χ2-distribution by
(T−1)S2

σ2 ∼ χ2(T − 1). In a multivariate setting (under the
multivariate normal assumption), the observed variance–
covariance matrix is related to the Wishart distribution by
(T − 1)V ∼ W (Σ , T − 1), where we write the observed
ariance–covariance matrix as

=

⎡⎢⎢⎣
V KK · · · V K1

...
. . .

...

V T
K1 · · · V 11

⎤⎥⎥⎦ . (28)

ith the assumptions outlined above, the likelihood is
efined by the Wishart distribution, which implies that
he log-likelihood is given by

(β, α;V ) ∝ −
1
2
Tr(Σ−1(T − 1)V ) −

T − 1
2

log |Σ |

= −
T − 1

2
TrΣ−1V +

T − 1
2

log |Σ−1
|. (29)

he maximum likelihood estimates of β and α are given
y

β̂

α̂

]
= argmax

β,α
l(β, α;V ), (30)

nd the maximum likelihood estimate of Σ is

ˆ = Σ (β̂, α̂). (31)

he estimation is done for one aggregation level at a
ime, starting from the bottom level, assuming that the
ower levels are correctly estimated. The rationale is that
he variance–covariance matrix should be correct for the
ower levels before we continue with higher levels in the
ierarchy. This approximation is similar to the composite
onditional likelihood presented in Varin et al. (2011).
This implies that it suffices to consider the setup

u =

[
I S21

0 T 11

]
(32)

nd

−1
=

[
S22ST

22 0
0 Σ−1

1

]
. (33)

ere, T 11 is Su for the level preceding the current level,
hich is fixed in the estimation. If we again consider our
mall example, we would start by estimating S11 ∈ R4×4

Q Q Q Q T −1
sing [y1 , y2 , y3 , y4 ] . Then, with S11 (and hence Σ 1 )

7

fixed, at S11, we would estimate S22 and S12 and set
Σ−1

1 = S11ST
11.

The next step would be to rename

T 11 :=

[
I S21

0 I

]
(34)

Σ 1 := T 11

[
Σ 2 0
0 Σ 1

]
T T

11 (35)

and estimate S33 (which is named S22) and the summation

S21 :=
[
S32 S31

]
. (36)

In order to set up the estimation, we examine the two
terms in the log-likelihood (29). We begin with the term
inside the trace:

Σ−1V = S−T
u Σ−1S−1

u V

=

[
I 0

−T−T
11 ST

21 T−T
11

][
S22ST

22 0

0 Σ−1
1

]
S−1
u V

=

[
S22ST

22 0

−T−T
11 ST

21S22ST
22 T−T

11 Σ
−1
1

][
I −S21T−1

11
0 T−1

11

]
V

=

[
S22ST

22 −S22ST
22S21T−1

11

−T−T
11 ST

21S22ST
22 T−T

11 ST
21S22ST

22S21T−1
11 +T−T

11 Σ
−1
1 T−1

11

]

×

[
V 22 V 21

V T
21 V 11

]
. (37)

Since we are interested in the trace, we only need the
block-diagonal elements:

(Σ−1V )11 = S22ST
22V 22 − S22ST

22S21T−1
11 V

T
21, (38)

(Σ−1V )22 = −T−T
11 ST

21S22ST
22V 21

+ T−T
11 ST

21S22ST
22S21T−1

11 V 11

+ T−T
11 Σ

−1
1 T−1

11 V 11. (39)

Omitting terms that do not contain S ij, we can write the
first part of the log-likelihood as

Tr(Σ−1V ) ∝ Tr(S22ST
22V 22) − Tr(S22ST

22S21T−1
11 V

T
21)−

Tr(T−T
11 ST

21S22ST
22V 21)

+ Tr(T−T
11 ST

21S22ST
22S21T−1

11 V 11)

= Tr(S22ST
22V 22) − 2Tr(S22ST

22S21T−1
11 V

T
21)

+ Tr(T−T
11 ST

21S22ST
22S21T−1

11 V 11). (40)

For the second term in the log-likelihood, we have

log |Σ−1
| = log |S−T

u Σ−1
u S−1

u |

= log |S−T
u | + log |Σ−1

u | + log |S−1
u |

= log |Σ−1
2 | + log |Σ−1

1 | + 2 log |S−1
u |

= log |S22ST
22| + log |Σ−1

1 | + 2 log |S−1
u |

= 2 log |S22| + log |Σ−1
1 | + 2 log |S−1

u |. (41)

Both S22 and S−1
u are upper triangular matrices. The di-

agonal elements of S−1
u are all equal to one and, hence,

log |S−1
u | = 0. The diagonal elements of S22 are α2

ii , which
means that

log |Σ−1
| ∝

∑
logα2

ii . (42)

i
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We use the following notation:

• I22ij is a matrix with the same dimensions as S22 and
elements corresponding to αij equal to one, and

• I21ij is a matrix with the same dimensions as S21 and
elements corresponding to βij equal to one.

In order to find the estimation equations, we calculate the
derivative of the log-likelihood function:

∂ l
∂βij

= (T − 1)Tr(S22ST
22I

21
ij T

−1
11 V

T
21)

−
1
2
(T − 1)Tr(T−T

11 (I21ij )
T S22ST

22S21T−1
11 V 11)

−
1
2
(T − 1)Tr(T−T

11 ST
21S22ST

22I
21
ij T

−1
11 V 11)

= (T − 1)Tr(S22ST
22I

21
ij T

−1
11 V

T
21)

− (T − 1)Tr(T−T
11 (I21ij )

T S22ST
22S21T−1

11 V 11)

= (T − 1)Tr(S22ST
22I

21
ij T

−1
11 V

T
21)

− (T − 1)
∑
kl

βklTr(T−T
11 (I21ij )

T S22ST
22I

21
kl T

−1
11 V 11).

(43)

he estimation equation ( ∂ l
∂β

= 0) for β given α can be
ormulated as

β (α)β = Y β (α) (44)

r

ˆ (α) = X−1
β (α)Y β (α). (45)

he estimation equation for α is split into two parts:
he diagonal elements (αii), and the off-diagonal elements
αij). We start by rewriting the trace

r(Σ−1V ) ∝ Tr(S22ST
22V 22) − 2Tr(S22ST

22S21T−1
11 V

T
21)

+ Tr(T−T
11 ST

21S22ST
22S21T−1

11 V 11)

= Tr(S22ST
22(V 22 − 2S22ST

22S21T−1
11 V

T
21))

+ Tr(S22ST
22S21T−1

11 V 11T−T
11 ST

21)

= Tr(S22ST
22(V 22 − 2S12T−1

11 V
T
21

+ S21T−1
11 V 11T−T

11 ST
21))

= Tr(S22ST
22F (β)). (46)

he derivative of the log-likelihood with respect to αij
i ̸= j) is

∂ l
∂αij

= −
1
2
(T − 1)

[
Tr(I22ij S

T
22F (β)) + Tr(S22(I22ij )

TF (β))
]

= −
1
2
(T − 1)

[
Tr(I22ij S

T
22F (β)) + Tr((I22ij )S

T
22F

T (β))
]

= −
1
2
(T − 1)Tr(I22ij S

T
22(F (β) + F T (β)))

= −
1
2
(T − 1)

∑
k̸=l

αklTr(I22ij (I
22
kl )

T (F (β) + F T (β)))

−
1
2
(T − 1)

∑
k

αkkTr(I22ij (I
22
kk )

T (F (β) + F T (β))).

(47)
8

The estimation equation ( ∂ l
∂αij = 0) for αij given αii and β

can be formulated as

Xαij (β)αij
= Y αij (αii, β) (48)

or

α̂
ij

= X−1
αij (β)Y αij (αii, β). (49)

The derivative of the log-likelihood with respect to αii is

∂ l
∂αii

=
1
2
(T − 1)

⎡⎣−

∑
k̸=l

αklTr(I22ii (I
22
kl )

T (F (β) + F T (β)))

−

∑
k

αkkTr(I22ii (I
22
kk )

T (F (β)+F T (β))) +
2
αii

Tr(I22ii )

]
.

(50)

ote that I22ii (I
22
kk )

T
= 0 for i ̸= k. Therefore, we get the

estimation equation

0 = αii

∑
k̸=l

αklTr(I22ii (I
22
kl )

T (F (β) + F T (β)))

+ α2
iiTr(I

22
ii (I

22
ii )

T (F (β) + F T (β))) − 2Tr(I22ii )

= a(β)α2
ii + b(αij, β)αij − c (51)

ith solutions

∗

ii =
−b(αij, β) ±

√
b2(αij, β) + 8a(β)c
2a(β)

, (52)

where c is clearly larger than zero, and a(β) > 0. To see
his, consider random variables x and y with V [x] = V 22,
V [y] = V 11, and Cov[x, y] = V 12. Then V [x− S12T−1

11 y] =

F + F T and a(β) = Tr
(
I22ii (I

22
ii )

T
(
F (β) + F T (β)

))
= (F +

F T )ii > 0, meaning that α∗

ii is not complex. Thus,

α̂ii =
−b(αij, β) +

√
b2(αij, β) + 8a(β)c
2a(β)

> 0, (53)

which is the solution we choose here.
Eqs. (45), (49), and (53) define a robust, iterative algo-

rithm (similar to an expectation–maximisation algorithm)
for this problem. The solution can be found by iterating
between these three equations. The algorithm is robust
because every iteration increases the value of the like-
lihood function. Therefore, it will eventually converge,
although convergence might be to a local optimum (the
upper bound for the likelihood is when SuΣ

uST
u = V ,

cf. (27)).

4.5. Newton ’s method and the Hessian

It is well known that algorithms like the one described
in the previous subsection can be fairly slow. An alterna-
tive is to use Newton’s method. To that end, the Hessian of
the parameters is needed. The Hessian also serves as the
basis for the Wald test that is used for model reduction
and may be used for model building through the score
test.

When using Newton’s method, it is reasonable to re-

quire that αii > 0. A simple way to do this is by estimating
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τii = log(αii). We first note that

∂ l
∂τii

=
∂ l

∂αii

∂αii

∂τii

= −
1
2
(T − 1)eτiiTr(I22ii S

T
22(F (β) + F T (β))) + 2Tr(I22ii ).

(54)

he second derivative can be calculated by

∂2l
∂τiiτkk

= −
1
2
(T − 1)eτii+τkkTr(I22ii (I

22
kk )

T (F (β) + F T (β))).

(55)

ence,

∂2l
∂τ 2

ii
= −

1
2
(T − 1)e2τiiTr(I22ii (F (β) + F T (β))), (56)

∂2l
∂τiiτkk

= 0; i ̸= k, (57)

nd

∂2l
∂τiiαkl

= −
1
2
(T−1)eτiiTr(I22ii (I

22
ij )

T (F (β)+F T (β))); k ̸= l.

(58)

or αij, we get

∂2l
∂αijαkl

=
1
2
(T − 1)Tr

(
(I22ij )

T I22kl
)
. (59)

ow note that

∂ l
∂βij

= (T − 1)Tr(S22ST
22(I

21
ij T

−1
11 V

T
21 − S21T−1

11 V 11T−T
11 (I21ij )

T ))

(60)

nd, therefore,

∂2l
∂αkl∂βij

= (T − 1)Tr((I22kl S
T
22 + S22(I22kl )

T )(I21ij T
−1
11 V

T
21

− S21T−1
11 V 11T−T

11 (I21ij )
T )), (61)

∂2l
∂τkk∂βij

= (T − 1)eτkkTr((I22kkS
T
22 + S22(I22kk )

T )(I21ij T
−1
11 V

T
21

− S21T−1
11 V 11T−T

11 (I21ij )
T )). (62)

inally, we have that

∂2l
∂βij∂βkl

= −(T − 1)Tr(S22ST
22I

21
kl T

−1
11 V 11T−T

11 (I21ij )
T ). (63)

ewton’s method is much faster (needs fewer iterations)
han the robust, iterative algorithm defined by (45), (49),
nd (53), but it requires good initial values in order to
onverge. In the final algorithm, we use the robust algo-
ithm to initialise before using Newton’s method. In cases
here Newton’s method diverges even after initialisation,
e go back to the slower but robust algorithm defined in
ection 4.4.
9

. Model reduction and shrinkage

Using the presented method, the full or saturated
odel has the same number of parameters as the em-
irical variance–covariance matrix. It is often of interest
o reduce models using statistical inference. The likeli-
ood framework allows us to explore different hypothe-
es about the correlation structure. We can, for example,
se Wald or likelihood-ratio tests to remove insignificant
arameters by setting them equal to zero, or test the
ypothesis that certain parameters are equal. We can also
se specific hypotheses when setting up the model, for
xample by assuming that the correlation matrix within
ach aggregation level has an AR(1) structure, or by as-
uming some degree of sparsity in the between-level
ummation matrix.
The Wald test can be calculated directly based on

he results from Newton’s method. The likelihood-ratio
est, on the other hand, is time-consuming because the
ikelihood of the reduced model needs to be recalculated
sing the iterative method described above.
Consequently, we suggest using the Wald test to se-

ect candidates for model reduction and confirming or
ejecting the reduction using a likelihood-ratio test. Let θ
enote the full set of parameters and θ0 a subset of θ. We
est two different types of hypotheses:

H0,a : θ0 = 0 (64)

0,b : θi − θj = 0. (65)

he hypothesis H0,a is only relevant for parameters in
ij and β. The hypothesis H0,b is only tested within each

group, i.e. τii = τjj, αij = αkl (i ̸= j, k ̸= l, and (i, j) ̸= (k, l)),
and βij = βkl (for (i, j) ̸= (k, l)).

The variance–covariance matrix for all parameters is
approximated by Σ θ = −H−1. The test statistic for
hypothesis H0,a is

Ta = θ̂
T
0Σ

−1
θ0

θ̂0, (66)

which is compared to a χ2-distribution with p0 = dim(θ0)
degrees of freedom. Here, Σ−1

θ0
is the part of Σ θ that

corresponds to θ0.
For hypothesis H0,b, we need the variance of the dif-

ference

σ 2
ij =

[
1 −1

]
Σ θij

[
1

−1

]
, (67)

where Σ θij is the part of Σ θ that corresponds to θi and θj.
The test statistic for this hypothesis is

T0,b =
(θ̂i − θ̂j)2

σ 2
ij

, (68)

which is compared to a χ2-distribution with one degree
of freedom.

Using statistical inference to remove insignificant pa-
rameters one by one leads to a multiple testing problem,
as it involves testing of a large number of hypotheses. A
simple solution is to require a stricter significance level
for each individual comparison (e.g. using the Bonferroni
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orrection), to compensate for the large number of sta-
istical tests. By choosing a stricter significance level, the
umber of parameters can be further reduced.

.1. Summary of algorithm

The entire workflow of the algorithm is summarised
elow:

1. Bottom level.

(a) Estimation.

i. Initialise a variance–covariance struc-
ture for the bottom level (i.e. an index
set of non-zero elements of S11).

ii. Iterate between (49) and (53) a fixed
number of times (we do 10 iterations).

iii. Use the result from 1(a)ii as the initial
value for Newton’s method. If New-
ton’s method diverges, go back to 1(a)ii

iv. Report the parameter estimates, likeli-
hood, and Hessian.

(b) Model reduction.

i. Choose in which order to test parame-
ters for removal (we rank according to
the smallest marginal Wald test statis-
tic).

ii. Calculate the test statistics (66) for the
increasing set of parameters accord-
ing to 1(b)i until significant (we use
significance level 5%) and confirm by
likelihood-ratio test using Step 1(a).

iii. Calculate the test statistics for all rel-
evant pairwise comparisons and indi-
vidual parameters that can be set to
zero, reduce the model, and confirm by
likelihood-ratio test using 1(a).

iv. Report the parameters and structure of
S ii and S ij.

2. Iterate through higher aggregation levels with the
lower levels fixed in the same way as the bottom
level, except that the estimation of β is included
(i.e. (45) in 1(a)ii and in Newton’s method).
3. Report the final result.

10
he result from the optimisation described above is used
s input to the shrinkage approach described next.

.2. Shrinkage

It has been shown before that shrinkage works well
nd is often needed in order to get more robust esti-
ates of the variance–covariance matrix in both cross-
ectional (Wickramasuriya et al., 2019) and temporal hi-
rarchies (Nystrup et al., 2021, 2020). Shrinkage is effec-
ively a dimensionality reduction technique. Usually this
s done by shrinking the correlation matrix towards the
dentity matrix. The framework presented here allows us
o shrink towards more general structures, similar to the
dea of Nystrup et al. (2020) and Pritularga et al. (2021).

We propose to shrink towards block-diagonal matrices
nd diagonal matrices, as illustrated in Fig. 3. Shrinking
owards the block diagonal corresponds to ignoring the
orrelation between forecasts from different aggregation
evels, while shrinkage towards the diagonal corresponds
o ignoring auto- and cross-correlation. These consider-
tions are implemented directly through a simple mod-
fication of the likelihood by introducing weights in the
ollowing way:

s(Σ ;V , w) = l(Σ ; w1V+w2blockdiagV+w3diagV ), (69)

here
∑

i wi = 1.
When w1 = 1, the full variance–covariance matrix

s considered; when w2 = 1, the full auto-correlation
tructure within each aggregation level is considered, but
ross-correlations between forecasts from different levels
re ignored; and finally, when w3 = 1, only the marginal
ariances are considered.

. Reconciliation of load forecasts

In the case study, we consider hourly load data from
he four price areas in Sweden shown in Fig. 4 plus the
otal for all of Sweden, i.e. five time series in total. We
onsider the period from 2016 to 2020.1

1 The data were downloaded from https://www.nordpoolgroup.com/
historical-market-data/.

https://www.nordpoolgroup.com/historical-market-data/
https://www.nordpoolgroup.com/historical-market-data/
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Table 1
Cross-validation table for all the tested areas. RRMSE and RSd are shown in percent. Subscripts 1 and 2 refer to (w1, w2) = (0.1, 0.01) and
w1, w2) = (0.01, 0.002), respectively. The shrinkage parameter is given rather than the degrees of freedom for shrinkage.

SE SE1 SE2 SE3 SE4

df RRMSE Rsd df RRMSE Rsd df RRMSE Rsd df RRMSE Rsd df RRMSE Rsd

Obs-test 1830 −12.4 −24.6 1830 −8.5 −16.5 1830 −9.8 −18.8 1830 −15.9 −27.3 1830 −15.3 −27.3
Obs-train 1830 0.1 −2.6 1830 4.1 1.6 1830 2.1 5.8 1830 −2.3 −4.7 1830 −5.2 −15.6

Full-Full1 402 −4.8 −6.9 306 −1.7 −5.4 413 −4.1 −9.7 413 −5.6 −8.6 464 −5.5 −6.3
Full-Full2 402 −5.3 −8.8 306 0.8 −4.1 413 −3.1 −8.7 413 −5.8 −8.4 464 −6.6 −9.2
Full-21 219 −3.8 −6.5 180 −3.2 −6.5 237 −4.0 −9.1 240 −3.9 −6.2 264 −4.0 −4.5
Full-22 219 −3.8 −8.7 180 −2.2 −5.3 237 −3.8 −8.8 240 −4.9 −8.2 264 −3.7 −6.0
Null-Null1 83 −4.3 −6.8 77 −2.7 −4.6 81 −4.1 −9.2 85 −4.8 −7.6 85 −4.6 −3.1
Null-Null2 83 −3.7 −8.8 77 −0.7 −1.4 81 −3.1 −8.3 85 −4.0 −7.5 85 −4.1 −5.4

Shrink 0.015 −5.3 −9.8 0.016 −1.3 −4.4 0.035 −4.0 −8.8 0.015 −7.4 −12.8 0.016 −7.0 −10.5
Auto-covariance 69 −2.2 −0.9 49 −2.9 −4.7 49 −3.5 −6.6 71 −1.6 −1.7 71 −2.2 0.8
Model-AR1 60 −2.4 −1.5 60 −3.0 −4.8 60 −3.2 −6.2 60 −1.9 −2.2 60 −2.2 1.2
Diag 60 −3.1 −4.8 60 −2.4 −3.8 60 −2.6 −5.3 60 −2.9 −4.7 60 −2.6 −3.2
A

Fig. 4. Map showing the Nord Pool region, including the four price
areas in Sweden.

6.1. Forecast models

The years 2016 to 2019 are used for estimating a
ean-value structure for each of the five areas. These
odels are given by

ˆt =β0 +

4∑
i=1

βs
i sin

(
2iπdt
366

)
+

βc
i cos

(
2iπdt
366

)
+ γ (ht ), (70)

where dt is the day of the year, and ht is the hour of the
day. The data used for modelling are the residuals from
this linear model.

Due to non-stationarity, the original data have very
high auto-correlation at all lags, as seen from the top pan-
els in Fig. 5. In particular, the 24-h-lagged auto-correlation
decays slowly. The residuals from the mean-value model
(70) shown in the bottom panels of Fig. 5 have a faster
decay in the auto-correlation function, though both 24-h
and 168-h (one-week) seasonality are clearly visible.
 e

11
Double-seasonal auto-regressive models of order (3,3,3)
in the seasons (1,24,168) hours (except the 24-h model
which has order (3,3) in (24,168) hours) are then fitted
to the year 2019, for each level of the hierarchy. The
residuals shown in Fig. 6 do not display clear seasonal
patterns. Even though most of the systematic behaviour in
the data seems to be captured by the model, it is also clear
that the data contain some very large residuals in both
directions. For a better understanding of the assumptions
underlying the model, we assessed the proposed method
in a simulation study based on real data, as described in
Section 7.

6.2. Results

We use the year 2019 for estimating the variance–
covariance matrix for the base forecast errors and 2020
to evaluate the method out of sample. The performance
in terms of the RRMSE of the methodology is presented in
Table 1 for two different choices of (w1, w2). In addition
to RRMSE, the table includes the measure Rsd, which
is calculated using observed standard error rather than
RMSE. This is a measure of the risk of the method/model.

We test the following three different initial models for
the variance–covariance matrix (see Fig. 2 for an illustra-
tion), each for the two different choices of wi:

Full-Full: Reduction from a full model similar to the
observed variance–covariance matrix but re-
duced by testing if parameters should be zero
or if two parameters could be the same using
likelihood-ratio and Wald tests.

Full-2: Reduction from a model with the full structure
for the block diagonal, but only two entries
away from the data-sharing entries for the
cross-correlation. For example, in the second
column of Fig. 2 this would imply that β

HQ
14 and

β
HQ
21 would be included.

Null: Reduction from a model with only one off-
diagonal element in Sii and only one parameter
for each cross-correlation.

dditionally, we consider the following benchmark mod-

ls:
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Fig. 5. Left panel: The original consumption data for all of Sweden and the residuals from the mean-value model. Right panel: Auto-correlation
function for the data.
Fig. 6. One-hour-ahead forecast errors and auto-correlation function for the errors.
Obs-test: Using the variance–covariance matrix
calculated on the test set. This is not
a real benchmark but it provides an
upper bound for the improvements.

Obs-train: Using the observed variance–covariance
matrix from the training set, equivalent
to the cross-covariance estimator con-
sidered by Nystrup et al. (2021, 2020).

Shrink: Using the observed variance–covariance
matrix from the training set with op-
timal shrinkage (Ledoit & Wolf, 2003;
Schäfer & Strimmer, 2005). Many con-
sider this to be the state-of-the-art
method in both cross-sectional (Wick-
ramasuriya et al., 2019) and tempo-
ral (Nystrup et al., 2021) forecast rec-
onciliation.

Auto-covariance: Estimating the block-diagonal matrix
for each level using the presented
12
methodology while ignoring all cross-
covariances, as proposed by Nystrup
et al. (2020).

Model-AR1: Using the lag-one auto-correlation ob-
tained from the double seasonal AR
model to calculate the forecast correla-
tion matrix. This is similar to the idea
behind Markov scaling proposed by Nys-
trup et al. (2020).

Diag: Only a diagonal variance matrix is used,
thus ignoring all auto- and cross-
covariances, equivalent to hierarchy
variance scaling proposed by Athana-
sopoulos et al. (2017).

As seen from the top row of Table 1, the potential
improvements in terms of RRMSE range from 8.5% to
15.9%. The actual improvements are always less than half
of the potential. Using the variance–covariance matrix
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8.
from the training period does not give good results, as
the RRMSE is positive in three out of the five cases. This
shows that some shrinkage/reduction is needed in order
to get good results. The simple benchmark models, which
ignore cross-correlation, consistently yield improvements
in the range from 1.6% to 3.5%.

Shrinkage and Diag match the diagonal elements of
he observed variance–covariance matrix. For the other
odels, the entire likelihood is matched with the avail-
ble parameters, which can cause a slight shift of the
iagonal elements. For the Auto-covariance approach, the
resented algorithm is applied to each level while cross-
ovariances are ignored. In some cases, this leads to fewer
egrees of freedom compared to some of the other simple
enchmark models with similar performance. The num-
er of parameters for the initial Auto-covariance model is
55, so the number of parameters is reduced by a factor
etween six and nine.
Shrinkage gives good results in most areas. Table 1

eports the shrinkage parameter in each area, rather than
howing the degrees of freedom for shrinkage (which
s 1830). The estimated shrinkage parameter is around
.015 in all areas, with the exception of SE2, where it is
igher. In this area the likelihood-based method outper-
orms shrinkage.

The likelihood-based approach generally leads to im-
rovements in accuracy. Which of the models performs
est differs between the areas. For example, Full-Full
ith low shrinkage has good performance in SE, while it
erforms poorly in SE1, where Full-2 with high shrink-
ge performs well. In SE2, Full-Full and Null with high
hrinkage both perform well. In SE3 and SE4, the high-
imensional models have the best performance.
In all cases there is a significant parameter reduction.

he initial models (before model reduction) have 1830
Full-Full), 930 (Full-2), and 140 (Null) parameters, re-
pectively. This means that the number of parameters is
educed by a factor of 3.9–6.0, 3.5–5.2, and 1.6–1.8, re-
pectively, compared to the initial models. The Null model
utperforms the simple benchmark models in most cases,
nd in many cases it performs similarly to Shrinkage, but
ith a much lower number of parameters.
We also see that the performance varies across the dif-

erent areas. SE1 seems to be the most difficult, as none of
he models are able to improve the RRMSE by more than
.2%. This is also the area where Obs-train has the worst
erformance, indicating that the variance–covariance ma-
rix changes significantly between 2019 and 2020. This
avours the simple benchmark models and models with
igh shrinkage. At the other end of the spectrum, Obs-
rain performs quite well in SE4, where shrinkage and the
ikelihood-based models with low shrinkage have a better
erformance.
In general, across all models and areas, the risk mea-

ure (Rsd) and the performance measure (RRMSE) follow
ach other (i.e. good performance in RRMSE implies good
erformance in Rsd). To summarise, the likelihood-based
ethod performs well in most areas with much fewer
arameters than optimal shrinkage.
13
7. Simulation study

To evaluate the method, we consider a complex triple-
seasonal AR model with seasonalities of 24, 168, and 168 ·

52 and corresponding orders 18, 6, 12, and 1. At each
level of the hierarchy, a double-seasonal AR model with
seasonalities corresponding to 24 h and 168 h and order
(3,3,3) is estimated based on 100 years of data. This yields
100 estimated AR processes. Fig. 7 shows the average
correlation matrix for the 100 simulations, which clearly
has a lot of structure.

Summary of simulation setup:

• Simulate 100 ‘‘years’’ of data (data-generating pro-
cess (18, 0, 0)×(6, 0, 0)24×(12, 0, 0)168×(1, 0, 0)52·16

• Estimate an AR process for each year (model (3, 0, 0)
× (3, 0, 0)24h × (3, 0, 0)168, except for the daily level,
which has one seasonal component with weekly
season).

• Calculate 24-h forecasts in sample and find the
variance–covariance for day-ahead forecasts.

• Calculate reconciled forecasts out of sample for the
following year using different versions of the
variance–covariance matrix.

• Compare the accuracy to the bottom-level base fore-
cast.

In order to explore the effect of choosing different weights,
these are optimised for the simple structure. The structure
is such that

αii
kl = 0; l − k > 1, (71)

β
ij
kl = β ij

; for shared observations between levels, (72)

β
ij
kl = 0; if observations are not shared between levels.

(73)

The weights w1 and w2 are optimised for different lengths
T of the training period for the variance–covariance ma-
trix. Only the training set for the covariance is changed,
while the training period for the AR model is kept at one
year. It should be noted that the RRMSE for the variance–
covariance is not a true out-of-sample evaluation, as the
weights are optimised over all 100 realisations.

The average RRMSEs for optimal shrinkage and the
likelihood approach are compared in Fig. 8. For large T ,
optimal shrinkage performs better than the likelihood
approach, whereas the likelihood approach outperforms
optimal shrinkage for T below 100. As T decreases, the av-
erage RRMSE for optimal shrinkage is above zero, mean-
ing that it is worse than the base forecast at the one-hour
level.

The results in Fig. 8 indicate that, when focusing on
the average performance across all the forecasts, shrink-
age is superior for large T . The risk that an individual
forecast is worse can be evaluated by considering the
variation of RRMSE or high quantiles. As seen in Fig. 9,
the variation in RRMSE is much higher for the shrinkage
method. The difference in performance is, at least in part,
due to some very high RRMSEs. When T = 182, shrink-
age has a better average RRMSE, but the worst case is

worse than the RRMSE for the likelihood-based method.
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Fig. 7. Average correlation matrix for the 100 simulations.
The box-plots in Fig. 9 indicate that the lower number
of parameters makes the likelihood-based method more
robust than shrinkage estimation, as it reduces the risk of
deteriorating forecast accuracy.

8. Conclusion

We proposed a novel framework for modelling and es-
timating the variance–covariance matrix used when rec-
onciling forecasts in a temporal hierarchy. We derived a
two-stage estimation procedure based on the formulated
model and its likelihood function. Formulating a model
with a likelihood function allowed us to apply statistical
inference to identify a parsimonious parametric struc-
ture for the variance–covariance matrix. Furthermore, the
14
likelihood-based approach offered a simple way of shrink-
ing the variance–covariance matrix towards different tar-
gets, such as diagonal and block-diagonal matrices.

In the case study on load forecasting, the proposed
method performed similarly to optimal shrinkage while
requiring significantly fewer parameters. Optimal shrink-
age did outperform the likelihood-based approach over-
all in terms of accuracy on the rather large data set.
The best likelihood-based models outperformed optimal
shrinkage in the most difficult cases, which illustrated the
robustness of the proposed framework.

The simulation study highlighted the difficulties in
estimating the variance–covariance matrix when it is of
high dimension compared to the number of observations
available for estimation. By simplifying its structure using
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Fig. 8. RRMSE for the shrinkage- and likelihood-based methods. For
he likelihood-based method, the weights have been optimised. The
ertical lines indicate standard errors.

he proposed framework for model reduction based on
ypothesis testing, the estimation could be made quite
obust at the cost of missing some structure when more
ata were available for estimation. By lowering the num-
er of parameters, the risk of deteriorating forecast accu-
acy through reconciliation could be reduced.

In future work we plan to explore the important choice
f shrinkage parameters in greater detail. On a practi-
al note, we expect a more efficient implementation to
e able to reduce the computation time for the estima-
ion procedure. On the modelling side, more research
s needed on the choice of suitable variance–covariance
tructures given the data available. We believe that the
ormalism presented in this article contributes to the un-
erstanding of forecast reconciliation, and that it is an im-
ortant step towards a model-based approach for describ-
ng noise propagation through aggregation in hierarchical
orecasting.
15
Declaration of competing interest

The authors declare that they have no known com-
peting financial interests or personal relationships that
could have appeared to influence the work reported in
this paper.

Acknowledgments

The authors thank an Associate Editor and two anony-
mous reviewers for detailed feedback. The authors re-
ceived funding from the following projects: ebalance-
plus (H2020 no. 864283), Sustainable plus energy neigh-
bourhoods (syn.ikia) (H2020 No. 869918), ARV (H2020
No. 101036723), Top-Up (Innovation Fund Denmark (IFD)
9045-00017B), SEM4Cities (IFD 0143-0004), Flexible En-
ergy Denmark (IFD 8090-00069B), and IEA Wind Task 51
(EUDP nr. 134-22015). Those contributions are gratefully
acknowledged.

Appendix A. Derivations for motivating example

In this appendix, we go through the detailed calcula-
tions for the example in Section 3. For the data-generating
process in (2), the two-step-ahead observations of the
process are given by

yH2t+1 = φ1yH2t + φ2yH2t−1 + ϵH
2t+1, (A.1)

H
2t+2 = φ1yH2t+1 + φ2yH2t + ϵH

2t+2

= (φ2
1 + φ2)yH2t + φ1φ2yH2t−1 + φ1ϵ

H
2t+1 + ϵH

2t+2.

(A.2)

he data-generating process for the annual level is
A
2t+2 = yH2t+1 + yH2t+2

= (φ1 + φ2
1 + φ2)yH2t + (φ1φ2 + φ2)yH2t−1

+ (1 + φ1)ϵH
2t+1 + ϵH

2t+2. (A.3)

t follows that the data-generating process for the full
hree-dimensional vector can be written as

2t+2 =

⎡⎢⎣yA2t+2

yH2t+1
H

⎤⎥⎦

y2t+2
Fig. 9. Box-plots of RRMSEs for different numbers of observations used to estimate the variance–covariance matrix (using the optimal weights).
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T

p

γ

a

γ

T
t

ρ

T
f

A

=

⎡⎢⎣φ1φ2 + φ2 φ1 + φ2
1 + φ2

φ2 φ1

φ1φ2 φ2
1 + φ2

⎤⎥⎦[
yH2t−1

yH2t

]

+

⎡⎣φ1 + 1 1
1 0
φ1 1

⎤⎦[
ϵH
2t+1

ϵH
2t+2

]
= ΦyH

2t + Φϵϵ
H
2t+2, (A.4)

where yH
2t = [yH2t−1, y

H
2t ]

T and ϵH2t+2 = [ϵH
2t+1, ϵ

H
2t+2]

T .
For modelling purposes we assume AR(1) models at

both levels, as outlined in (3) and (4). Given φ̃A and φ̃H,
we can write the forecast in matrix–vector notation as

ŷ2t+2|2t =

⎡⎢⎣ŷA2t+2|2t

ŷH2t+1|2t

ŷH2t+2|2t

⎤⎥⎦ =

⎡⎢⎣φ̃A φ̃A

0 φ̃H

0 φ̃2
H

⎤⎥⎦[
yH2t−1

yH2t

]
= ΓyH

2t .

(A.5)

We can find the variance of the base forecast error as
follows:

Σ = V [y2t+2 − ŷ2t+2|2t ]

= V [ΦyH
2t + Φϵϵ

H
2t+2 − ΓyH

2t ]

= V [(Φ − Γ )yH
2t + Φϵϵ

H
2t+2]

= (Φ − Γ )V [yH
2t ](Φ − Γ )T + σ 2ΦϵΦ

T
ϵ , (A.6)

with

V [yH
2t ] =

[
γ0 γ1

γ1 γ0

]
, (A.7)

where γi is the auto-covariance function for the data-
generating process at lag i.

The variance of the reconciled forecast error is

Σ̃ = V [y2t+2 − SPŷ2t+2|2t ]

= V [ΦyH
2t + Φϵϵ

H
2t+2 − SPΓyH

2t ]

= V [(Φ − SPΓ )yH
2t + Φϵϵ

H
2t+2]

= (Φ − SPΓ )V [yH
2t ](Φ − SPΓ )T + σ 2ΦϵΦ

T
ϵ . (A.8)

Here SP is the usual projection matrix for forecast recon-
ciliation, and P is defined by (9).

In Appendix B, we show that (A.8) is equivalent to

Σ̃ = SPΣPT ST , (A.9)

as derived by Wickramasuriya et al. (2019) (Lemma 1).
An advantage of the formulation in (A.8) is that we can
clearly see that the lower limit of the reconciled fore-
cast error variance is σ 2ΦϵΦ

T
ϵ , which is obtained when

SPΓ = Φ, i.e. when E[y2t+2|y2t ] = SPŷ2t+2|2t .
In order to find the coefficients φ̃A and φ̃H, we need

the auto-covariance function up to lag three. Using the
Yule–Walker equations, these are given by

ρ1 =
φ1

1 − φ2
, (A.10)

ρ2 =
φ2
1 + φ2(1 − φ2)

1 − φ2
, (A.11)

ρ = φ ρ + φ ρ . (A.12)
3 1 2 2 1
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The auto-variance is γi = γ0ρi, with

γ0 =
1

1 − φ1ρ2 − φ2ρ1
. (A.13)

he best estimate of φ̃H is ρ1.
The auto-covariance at lag zero and one for the annual

rocess is
A
0 = Cov[yA2t , y

A
2t ]

= Cov[yH2t + yH2t−1, y
H
2t + yH2t−1]

= 2γ0 + 2γ1, (A.14)

nd
A
1 = Cov[yA2t , y

A
2(t−1)]

= Cov[yH2t + yH2t−1, y
H
2t−2 + yH2t−3]

= γ1 + 2γ2 + γ3. (A.15)

he best estimate of φ̃A is the lag-one auto-correlation for
he annual process

A
1 =

γ1 + 2γ2 + γ3

2(γ0 + γ1)
. (A.16)

his concludes the needed derivations, as all values needed
or the example can be calculated with the above.

ppendix B. Proof that SPΣPT ST
= Σ̃

The purpose of this section is to show that

SPΣPT ST
= Σ̃ , (B.1)

where Σ is defined by (A.6) and Σ̃ is defined by (A.8).
Hence there is no contradiction between the result given
here and Lemma 1 of Wickramasuriya et al. (2019).

Using (A.6) we can write

SPΣPT ST
= SP(Φ − Γ )V [yH

2t ](Φ − Γ )TPT ST

+ σ 2SPΦϵΦ
T
ϵP

T ST

= SPΦV [yH
2t ]Φ

TPT ST
+ SPΓV [yH

2t ]Γ
TPT ST

− SPΦV [yH
2t ]Γ

TPT ST
−

SPΓV [yH
2t ]Φ

TPT ST
+ σ 2SPΦϵΦ

T
ϵP

T ST .

(B.2)

Next we write the equation SPS = S in detail as

SPS =

⎡⎣1 1
1 0
0 1

⎤⎦[
P11 P12 P13
P21 P22 P23

]⎡⎣1 1
1 0
0 1

⎤⎦
=

⎡⎣P11 + P21 + P12 + P22 P11 + P21 + P13 + P23
P11 + P12 P11 + P13
P21 + P22 P21 + P23

⎤⎦
=

⎡⎣1 1
1 0
0 1

⎤⎦ (B.3)

and

SP =

⎡⎣P11 + P21 P11 + P22 P13 + P23
P11 P12 P13

⎤⎦ . (B.4)

P21 P22 P23
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(

(

(

(

a

S

A

Φ

T

Using (A.4) we can write the elements of SPΦ as

SPΦ)11 = φ1φ2(P11 + P21 + P13 + P23)
+ φ2(P11 + P21 + P12 + P22)

= φ1φ2 + φ2 (B.5)
SPΦ)12 = φ1(P11 + P21 + P12 + P22)

+ (φ2 + φ2
1 )(P11 + P21 + P13 + P23)

= φ1 + φ2 + φ2
1 (B.6)

(SPΦ)21 = φ1φ2(P11 + P13) + φ2(P21 + P22)

= φ2 (B.7)

(SPΦ)22 = φ1(P11 + P12) + (φ2 + φ2
1 )(P11 + P13)

= φ1 (B.8)
SPΦ)31 = φ1φ2(P21 + P23) + φ2(P21 + P22)

= φ1φ2 (B.9)

SPΦ)32 = φ1(P21 + P22) + (φ2
1 + φ2)(P21 + P23)

= φ2
1 + φ2 (B.10)

nd hence,

PΦ = Φ. (B.11)

dditionally, using (A.4) we can write

ϵ = S + φ1

[1 0
0 0
1 0

]
(B.12)

and

SP

[1 0
0 0
1 0

]
=

⎡⎣P11 + P21 + P13 + P23 0
P11 + P13 0
P21 + P23 0

⎤⎦ =

[1 0
0 0
1 0

]

(B.13)

and hence,

SPΦϵ = SPS + φ1SP

[1 0
0 0
1 0

]

= S + φ1

[1 0
0 0
1 0

]
= Φϵ . (B.14)

Therefore,

SPΣPT ST
= SPΦV [yH

2t ]Φ
TPT ST

+ SPΓV [yH
2t ]Γ

TPT ST

− SPΦV [yH
2t ]Γ

TPT ST
−

SPΓV [yH
2t ]Φ

TPT ST
+ σ 2SPΦϵΦ

T
ϵP

T ST

= ΦV [yH
2t ]Φ

T
+ SPΓV [yH

2t ]Γ
TPT ST

− ΦV [yH
2t ]Γ

TPT ST
−

SPΓV [yH
2t ]Φ

T
+ σ 2ΦϵΦ

T
ϵ

= (Φ − SPΓ )V [yH
2t ](Φ − SPΓ )T + σ 2ΦϵΦ

T
ϵ

= Σ̃ . (B.15)
his concludes the proof.
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