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A B S T R A C T

Smart meters at consumers create opportunities to improve operation of the district heating sector using
data-driven methods. Information from these meter measurements carries the potential to increase the energy
efficiency of both individual houses and the utility network, for example by identifying buildings with too high
return temperature, or by detecting leakage in the network. This paper proposes a method for using meter data
to estimate network temperatures. Network temperatures can subsequently be used to estimate the network
characteristics, namely the nonlinear relationship between network temperature and the plants’ temperature
and flow. A description of the network characteristics is needed for most temperature-optimisation methods
to keep the supply temperature as low as possible without violating the system constraints. Traditionally,
measurement wells located in the network have been used. These wells are located at critical points in the
network where the largest temperature losses occur. Since the lowest temperature often varies over time,
multiple critical points are necessary. The method presented in this paper eliminates the need for these physical
critical points in the network. It also makes it possible to change the location of the critical points if needed.
The network temperature is estimated using a stochastic state–space model of the heat dynamics from the
street level distribution pipe over the service pipe and into individual houses. The parameters in the model
are estimated using a maximum likelihood approach, and the Kalman Filter is used to evaluate the likelihood
function. The estimation process takes advantage of automatic differentiation using the R package Template
Model Builder (TMB) to reduce the computational workload. The proposed method is validated by comparing
the estimated temperature with the temperature measured from a measurement well.
1. Introduction

Future energy systems need to be flexible because of increasing
shares of renewable energy sources that are typically intermittent
due to their direct weather dependency. Furthermore, new regulation
continues to emerge and awareness of greenhouse gas emissions is
increasing, with a consequential transition to more renewable energy.
For these reasons, more sophisticated methods are needed to deliver
the required energy demand without using fossil fuels. Energy systems
for gas, heat and electricity need to be integrated to phase out fossil
fuels. Because of their unique capability to store energy, district heating
systems play a key role in the transition towards more flexible energy
systems [1]. An example is that wind power can be used for heating
water to be delivered either directly or stored when the electricity
demand is lower than the generated wind power. Hence, in order to
fully maximise the flexibility potential of energy systems, they must be
integrated. In addition, each energy system needs to perform efficiently
to deliver an optimal energy integration. Mathiesen et al. [2] gives an

∗ Correspondence to: Anker Engelunds vej 1, Building 101A, 2800 Kongens Lyngby, Denmark.
E-mail address: hgbe@dtu.dk (H.G. Bergsteinsson).

extensive discussion on the integration of all energy systems to increase
the flexibility of the system and reach 100% renewable energy supply.

The work presented here focuses on methods for optimising the
temperature control in district heating systems based on information
from smart meters installed at consumer level. Today, smart meters
that can take very frequent readings are installed in many buildings.
This paper suggests methods to take advantage of frequent readings by
smart meters.

The role of district heating systems is to meet consumer heat de-
mand while simultaneously minimising both production and operation
costs. Optimisation of production planning is concerned with schedul-
ing heating unit operation in order to produce the desired heat demand
at the lowest cost [3]. In Denmark, heat is often co-generated (com-
bined heat and power (CHP) production). CHP units typically run
during periods with high electricity prices. Any heat that is not used
during these periods is stored in the system. During low electricity
price periods, district heating operators either use this stored heat or
run heat-only units, e.g. gas boilers, heat pumps or solar heat [4].
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Nomenclature

Abbreviations

SDE Stochastic Differential Equation
TMB Template Model Builder
CHP Combined Heat and Power
ODE Ordinary Differential Equation
PDE Partial Differential Equation
GDPR General Data Protection Regulation

Mathematical notation

𝜔 Wiener process
𝜎 Diffusion coefficient
𝑉 Observation covariance matrix
𝑒 Innovation
𝑆 Logistics function
𝐿 Likelihood function
 Log-likelihood function
U Random effects
𝜃 Fixed effects
𝑓 Drift term
𝑔 Diffusion term
ℎ Observation function
𝑥 System states
𝑢 External inputs
 Normal distribution
𝐾 Kalman gain
𝑃 State covariance matrix
𝛴 Observation covariance matrix

Physical parameters

𝑄 Mass flow rate [kg/s]
𝜌 Mass density [kg/m3]
𝑐v Specific heat capacity [kJ/(kg K)]
𝐴 Area [m2]
𝑣 Flow velocity [m/s]
𝑝 Absolute pressure [Pa]
𝑓D Darcy friction coefficient [–]
𝑆 Circumference [m]
𝑘 Thermal conductivity [W/(m K)]
𝑇 Temperature [◦C]
𝑞̇e Heat loss per meter [W/m]
𝐶 Heat capacity per meter [J/m K]
𝜆p Thermal conductivity [W/(m K)]
𝜏 Time constant [s]
𝑑o Outer diameter [m]
𝐿 Length of pipe [m]
𝑅 Thermal resistance per meter [(K m)/W]
𝑥a Insulation thickness [m]

Hence, the plant’s objective is to generate as much power as possible
during periods with high electricity prices while satisfying the heating
demand. This is achieved by keeping the supply temperature as low as
possible. Consequently, lowering the temperature will also reduce heat
loss in the network and production cost [5]. Hence, it is crucial to lower
the supply temperature in order to optimise the operation of the entire
district heating system.
2

Subscripts

𝑡 Time
𝑔 Ground

Superscripts

𝑠 Street
(𝑖) House index

Fig. 1. Reference curve, 𝑦ref shows the desired supply temperature of hot water for
given ambient air temperature.

A lower temperature in the network will translate to lower produc-
tion costs as the operation of most power producing devices can be
more efficient. For example, in a CHP plant, lowering the temperature
results in increase in ratio of power to heat output, and electricity is
more valuable than heat [6]. Also, if the utility uses several energy
sources then lowering the temperature will also increase the flexibility
of utilising the optimal energy sources at given time-point due to
the different limitation of each energy sources. Thus, this makes it
possible to utilise heat from new sources like excess heat from comfort
cooling. Without a lowering of the temperature these sources which
would otherwise have been disregarded due to too low temperatures
for entering the network. Likewise, it will be more efficient to operate
heat pumps in the network. This increased efficiency will result in
better investment feasibility for heat pumps. Heat pumps are likely to
play a bigger role in supplying heat to the network as they can utilise
heat sources with a low-temperature range, e.g. wastewater, ambient
water, industrial heat waste, and solar heat storage [7]. Therefore,
for optimal operation of a district heating network with multiple heat
sources (e.g. heat pumps and solar heat), temperature optimisation is
needed in order to keep the supply temperature as low as possible
while increasing both the efficiency and feasibility of heat sources. The
complexity of the dynamics of district heating networks implies that
data-driven models for temperature optimisation are needed to lower
the supply temperature in the network.

Traditionally, the optimisation of supply temperature has been con-
trolled using a reference curve based on the ambient air temperature,
as indicated in Fig. 1 [8]. The reference curve dictates the minimum
allowed supply temperature as a function of the ambient air tempera-
ture. The maximum at the left endpoint of the curve is related to the
physical limitation of the system, and the minimum temperature to the
right ensures a high enough temperature for domestic hot water usage
without risking the formation of bacteria, e.g. legionella. However, this
control scheme is a conservative estimate since it only considers one
variable to ensure that the heat supply is sufficient at any time, and
this often leads to an unnecessarily high supply temperature. Obviously,
heat demand is not only dependent on the ambient air temperature
but also by other climate variables, e.g. solar radiation and wind. The
weather effect on heat demand is also not instantaneous, as buildings
are known to have slow thermal reactions. The slow thermal reaction
in a single building is demonstrated in Madsen and Holst [9]. In Nielsen

and Madsen [10] it is shown how the physical knowledge about heat
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consumption in buildings can be used to establish a heat consumption
model for the district heating network. Preferably, the controller should
include heat demand forecasts and the network characteristics of the
system (transportation time, heat loss).

Madsen et al. [5] propose a control strategy for the supply tem-
perature at the plant by utilising heat demand forecasts and network
characteristics. The strategy estimates future set-points of the supply
temperature at the production plant by using a model for the network
characteristics determined from receiving feedback of the network
temperatures, and the approach allows the system to adapt to changes
in the system. This stochastic time-varying system is both nonlinear
and non-stationary, and consequently, a nonlinear and time-varying
transfer function was proposed in order to model the relationship
between the supply temperature and flow at the plant and the network
temperature from a critical point in the network. This strategy has been
demonstrated to lower the supply temperature at the district heating
plant and thereby reduce production costs and the heat losses in the
system [11].

This control strategy requires feedback from the system. Usually,
this information is measured at a selected number of so-called critical
points in the network at street level using sensors in measurement
wells. A critical point in the network is typically located close to the
end-users showing the largest temperature losses in transportation from
the plant. A single critical point is sub-optimal, since the location of the
critical points in the network can change over time as a consequence of
the diurnal pattern and consequently several (e.g. five) critical points
are normally used. However, networks change, e.g. pipes get older,
pipes are replaced, new areas are connected to the network, buildings
are refurbished and so forth, and hence it would be advantageous if
system feedback could be received at any particular location in the
network. This is possible by using data from smart meters installed at
consumers, to establish temperature feedback. This approach further-
more eliminates the need to install temperature sensors in measurement
wells. For a number of years, smart meters have been installed, al-
lowing consumers to link their consumption to bills from the district
heating utility. There is a requirement from the European Union that
all buildings have individual energy meters where feasible, including
heat meters for houses connected to district heating networks [12].

Smart meters create new opportunities to develop data-intelligent
methods for district heating operations. This digital transformation
has fostered research related to district heating at consumers. Data
from smart meters can be used to give valuable insight into network
performance and building energy efficiency through investigations of
possible leakage in the network or insufficient cooling at consumers.
For example, Kristensen and Petersen [13] use smart meter data to
derive three heating efficiency indicators of buildings to compare the
energy performance of the buildings, and also give insights on district
heating and smart meters in Denmark. However, the feedback of the
network temperature needs to be robust, and using measurements from
smart meters from single-family houses without a quality check could
give a wrong representation of the network characteristics. Bergsteins-
son et al. [14] propose a simple method to estimate the network
temperature by resampling and aggregating data from a group of smart
meters. Based on this data, an artificial network temperature is esti-
mated using time-wise quantile estimation at each time step. However,
the method is quite naive and is not robust when the measurements
are either of bad quality or they lack extended periods of time. A
more advanced model is therefore required to give more accurate and
reliable continuous feedback of the network. Hence, a model derived
from physical knowledge of the system is needed which uses meter
measurements to estimate the parameters of the network, i.e. grey-box
modelling.

Hence, by establishing a robust method to estimate the network
temperature at multiple points in the network by using smart meter
data will enable feedback options which again makes it possible for
utilities to implement controllers for temperature optimisation. Data-
driven temperature optimisation lowers supply temperature in the
network, thus decreasing the production cost and reducing heat losses
3

in the network.
1.1. Pipe dynamics and grey-box modelling in district heating networks

Thermodynamics modelling of hot water pipes in district heating
has been studied extensively, both to provide a deeper understanding
of the dynamics and to obtain information that can be used to minimise
cost: e.g. by selecting the optimal size of pipes or by reducing heat
losses in the network. For planned new district heating systems, models
of the network can be used to simulate scenarios for the design of
new pipelines and to analyse the hydraulic and thermal behaviour for
the purpose of minimising the costs of establishing the new networks
and to decide on their operation. For already established systems, the
methods can be used to simulate different scenarios, e.g. peak loads
or to identify locations where maintenance is needed. Hence, adequate
physical models of district heating networks are important for efficient
operation. There are studies that have proposed different methods
for modelling the thermodynamics in hot water pipes for operational
purposes. The most widespread approach is a finite element method
in which the pipe is divided into infinitesimal segments in order to
solve a governing partial differential equation for computations of the
temperature difference and heat loss in the pipes.

This can be solved using finite volume schemes, e.g. in Vander-
meulen [15] the first-order upwind finite volume model is used to study
district heating network flexibility by storing heat in the network by
altering the supply temperature. Other studies have proposed using a
finite element method to simulate the thermodynamics of having the
temperature distribution from plant to end-user for operation during
changes in the system [16]. Benonysson et al. [17] propose a node
method and derive a mathematical model of the pipes using heat
transfer equations to compute the outlet temperature of the pipe when
the inlet temperature is measured. Søgaard [18] propose modelling the
network as a dynamic input–output system, describing the network
response characteristics between measurements from the plant and a
point in the network. Hence, different possibilities have been proposed
in the literature to describe the network dynamics, from white-box
methods entirely based on physics to black-box models based solely
on measurements. There is no globally optimal method to describe the
dynamics, as each method has its pros and cons. White-box modelling
is suitable for network design and flexibility/peak-shaving simulations.
White-box methods are usually computationally heavy and require
human maintenance to validate and select appropriated values, while
black-box methods are fast and usually need no maintenance. There-
fore, black-box methods are better suited for control applications where
the computation time needs to be low such that the control can respond
quickly to changes, as proposed in Madsen et al. [19]. An extensive
summary of hot water pipe dynamics is given in van der Heijde [20]
and Vandermeulen [15].

The method proposed in this paper, will take advantage of this
physical knowledge of pipe thermodynamics to estimate street-level
network temperature (critical point) using smart-meter measurements.
This will be done using statistical methods to estimate the parameters
of equations that are derived from physics, i.e. by using a grey-box
modelling approach. Grey-box models bridge the gap between physical
and statistical modelling and are frequently studied in literature and
have shown promising results for parameter estimation and control pur-
poses. Madsen and Holst [9] demonstrates how grey-box models can be
used to describe the dynamics of the indoor air temperature in buildings
and its dependency on weather and heat input. The forecasting ability
of the method has proved to have high accuracy. Bacher and Madsen
[21] describe an approach for using data for optimal model selection of
grey-box models and for estimating model parameters for a particular
building. They also discuss grey-box model applications for validating
the energy performance of buildings, energy consumption forecasting
and indoor climate control. Thilker et al. [22] propose a grey-box model
to describe the heating dynamics of an old school building, and Thilker
et al. [23] demonstrates the potential of using the grey-box model to
control the return temperature to lower the operational cost of the

building.
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1.2. Contribution of the paper and overview

The main contribution of this work is the formulation and applica-
tion of a set of partially observed stochastic differential equations to
be used for inference on the temperature of the distribution network
at street level based on smart-meter readings from individual con-
sumers. The system of stochastic differential equations SDEs is derived
from partial differential equation PDE that describe the heat transfer
dynamics from the distribution pipe into single-family houses over a
service pipe. The estimated network temperature can be used to gain
information about the network response characteristics; i.e. how the
network reacts to changes in temperature or flow at the plant. This
information can be used as feedback for temperature control, for ex-
ample. Thus, this result makes physical measurement wells redundant,
as a group of houses with smart meters can be used to estimate the
network temperature.

The paper is organised as follows. Section 2 presents the reasoning
behind the chosen SDE formulation and explains the chosen estima-
tion method used for both parameter and state estimation. Section 3
presents the result from applying the methods to the presented data,
including parameter interpretation. Finally, Sections 4 and 5 discuss
the presented results and draw some general conclusions.

2. Methods

In this section, a model will be established which describes the heat
transfer between the distribution pipe and houses through a service
pipe. The model is derived from physics and takes the form of a
partial differential equation which is subsequently approximated by a
stochastic differential equation for continuous temperature estimates
in order to incorporate the information from smart meters. The heat
dynamics is affected by the thermodynamic properties of the pipes and
their relationship to the surroundings.

2.1. Stochastic differential equations

The models consider in this paper, will be on the following
continuous–discrete time stochastic state space form [24],

d𝑥t = 𝑓 (𝑥t , 𝑢t , 𝜃)d𝑡 + 𝑔(𝜃)d𝜔t (1)

𝑦t k = ℎ(𝑥t k ) + 𝑒t k (2)

here the system state 𝑥𝑡 evolves in continuous time as determined
y the drift 𝑓 and the diffusion 𝑔. The observation function ℎ relates
easurements to system states. The drift function depends on the state

tself, external inputs 𝑢t and the system parameters 𝜃. The drift term,
ccounts for most of the known phenomena of the system and draws on
hysical knowledge, while the diffusion relates to unaccounted for and
nknown system drivers as well as noise. The aim is to describe these
ffects by the random perturbations imposed by the Wiener process
t whose non-overlapping increments are independent and Gaussian-
istributed i.e. 𝜔t − 𝜔s ∼ 𝑁(0, 𝑡 − 𝑠). The (hidden) state 𝑥t is observed
indirectly) through the measurements 𝑦t k which become available at
ertain discrete times 𝑡 = 𝑡k . In this paper, it will be assumed that a
ubset of the states (the individual smart meters) are directly observed,
lthough contaminated by Gaussian noise 𝑒t k .

.2. Pipe modelling

The thermodynamics modelling of the processes inside a pipe is
ather complicated, and consequently a number of assumptions are
ntroduced to approach the problem and make it feasible. The water in
he pipes will be assumed to be incompressible, the pipe is a grounded,
nsulated single pipe (which implies no influence from the return pipe),
nd that the system is in a steady-state. It will also be assumed that
he ground temperature is constant throughout each month using the
4

nformation from Grunnet Wang et al. [25].
van der Heijde et al. [26] uses a dynamic thermo-hydraulic pipe
odel for district energy systems for the purpose of creating dynamic

imulations of the temperature in district heating networks and cooling
ipe systems. The pipe model is a partial differential equation describ-
ng the temporal evolution (𝑡) of the energy across the axial dimension
𝑥) in the pipe. The PDE describes the heat transfer and the associated
eat losses to the surroundings through a combination of the energy
nd the continuity equation. The equation is
𝜕(𝜌𝑐v𝑇𝐴)

𝜕𝑡
⏟⏞⏞⏞⏟⏞⏞⏞⏟

time
derivative

+
𝜕(𝜌𝑣(𝑐v𝑇 + 𝑝∕𝜌)𝐴)

𝜕𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

spatial
derivative

=

𝑣𝐴
𝜕𝑝
𝜕𝑥

⏟⏟⏟
pressure

difference
energy

+ 1
2
𝜌𝑣2|𝑣|𝑓D𝑆

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
wall friction
dissipation

+ 𝜕
𝜕𝑥

(𝑘𝐴𝜕𝑇
𝜕𝑥

)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
axial heat
diffusion

− 𝑞̇𝑒
⏟⏟⏟
heat
loss

,
(3)

where 𝜌 [kg/m3] is the mass density of the fluid in the pipe, 𝑐v [kJ∕(kg
)] is the specific heat of the fluid in the pipe, 𝐴 [m2] is the cross
ectional area of the pipe, 𝑣 [m/s] is the flow velocity, 𝑝 [kg/m3] is the
bsolute pressure, 𝑓D [−] is the Darcy friction coefficient, 𝑆 [m] is the
ipe circumference, 𝑘 [W∕(m K)] is the thermal conductivity, 𝑇 [◦C] is
he temperature inside the pipe, and 𝑞̇e [W/m] is the heat loss per unit
ength.

van der Heijde et al. [27] and Vandermeulen [15] argue that most
f the terms in Eq. (3) can be assumed to be negligible, and with the
dditional assumption that the water is incompressible the equation
implifies to
𝜕(𝜌𝑐v𝐴𝑇 )

𝜕𝑡
+

𝜕(𝜌𝑐v𝐴𝑣𝑇 )
𝜕𝑥

= −𝑞̇𝑒. (4)

The equation remains a PDE which describes the heat transfer
through a pipe in the form of an advection equation with the loss term
−𝑞̇e. The equation can be solved analytically when assuming steady-
state operation, but it is a challenging task. Hence, it is usually solved
instead by using finite volume methods, where the pipe is split into
multiple smaller sections. The solution is then obtained by integrating
across each of these sections. For further details, see van der Heijde
et al. [26], Dénarié et al. [28], and Grosswindhager et al. [29].

Eq. (4) will be used to estimate the supply temperature in the
distribution pipe in the street before entering the service pipe into the
house. This is illustrated in Fig. 2, where the street hot water 𝑇 (s)

𝑡 enters
the service pipe and the temperature, 𝑇 (i),obs

𝑡 is measured by the smart
meters after travelling over the service pipe. The temperature loss in
the system is assumed to be caused by heat loss to the surroundings.
The flow is assumed to be constant through the service pipe. The only
information that is known is the measurements from the smart meters
and the assumed constant ground temperature for each month using
the average temperature given by Grunnet Wang et al. [25]. The goal
is to use only the smart meter data to estimate the street temperature.
The data-driven model is a reformulation of Eq. (4) using a stochastic
differential equation as shown in Section 2.1.

The first step is to transform Eq. (4) into a standard Resistance–
Capacitance (RC) form. First, the heat capacity over the service pipe
per unit length of the water is defined as 𝐶 = 𝐴𝑐v𝜌 [J/m K]. Next, it
will be assumed that the mass flow is constant through the service pipe,
𝑄 = 𝜌𝐴𝑣 [kg/s]. The final assumption for this model derivation is that
the heat loss is proportional to the temperature difference between the
water and ground with the proportionality constant being the inverse
thermal resistance (between pipe and ground) as shown in Wallentén
[30]. Hence, Eq. (4) becomes,

𝐶 𝜕𝑇 +
𝜕(𝑐v𝑄𝑇 )

=
𝑇𝑔 − 𝑇 (𝑖)

. (5)

𝜕𝑡 𝜕𝑥 𝑅
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The next step is to discretise the equation in space
𝜕(𝑐v𝑄𝑇 )

𝜕𝑥
⟶

⏟⏟⏟
discretisation

𝑐v𝑄𝛥𝑇
𝛥𝑥

. (6)

Thus, the temperature difference is that between the street and house
𝛥𝑇 = 𝑇 (s)−𝑇 (i) over the service pipe length 𝛥𝑥. The length of the pipe is
then multiplied through the equation, which redefines the heat capacity
as 𝐶 = 𝐶𝛥𝑥 and the thermal resistance as 𝑅 = 𝑅∕𝛥𝑥. The system now
becomes
𝜕𝑇 t
𝜕𝑡

= 𝐶−1
(

𝑐v𝑄𝑡(𝑇
(s)
𝑡 − 𝑇𝑡) − 𝑅−1(𝑇𝑡 − 𝑇 g)

)

. (7)

This differential equation describes how the house temperatures
change with time. It is now straight-forward to formulate the proposed
stochastic differential equation (for one house)

d𝑇 t = 𝐶−1
(

𝑐v𝑄𝑡(𝑇
(s)
𝑡 − 𝑇𝑡) − 𝑅−1(𝑇𝑡 − 𝑇 g)

)

d𝑡 + 𝜎d𝜔𝑡, (8)

where 𝜎 is the diffusion coefficient and 𝜔𝑡 is a standard Wiener process,
i.e. the source of the noise in the system. Hence, we have established
a time-dependent stochastic state space model to describe the energy
exchange between the street and individual houses. Jointly with the
observation equation, this type of model is also referred to as a grey-box
model in the literature, see for instance [9].

As already mentioned, the only information available is the smart-
meter data, and the objective of this study is then to estimate the supply
temperature at the distribution pipe in the street before the water enters
the houses. To clarify; the information available is from multiple smart-
meter measurements installed in houses connected to the same street,
but there is no information on the street temperature. The street tem-
perature must in principle be greater or equal to the highest observed
house temperature, although estimated values of it can be lower when
accounting for measurement uncertainty. The actual behaviour of the
street temperature is determined by the plant output and the network
characteristics. However, in order to keep the specifications simple,
these detailed descriptions are considered to be outside the scope of the
current model, and, in the absence of any ‘‘real’’ drivers for the street
temperature, its dynamics are simply modelled by a random walk. The
model for the forwarded water temperature at the individual houses 𝑇 (𝑖)

𝑡
is that presented in Eq. (4). These equations are combined to obtain the
considered system of equations

d𝑇 (i)
𝑡 = 𝐶−1

𝑖

(

𝑐v𝑄
(i)
𝑡 (𝑇 (s)

𝑡 − 𝑇 (i)
𝑡 ) − 𝑅−1

𝑖 (𝑇 (i)
𝑡 − 𝑇 (g)

𝑡 )
)

d𝑡 + 𝜎id𝜔
(i)
𝑡 , (9a)

d𝑇 (s)
𝑡 = 𝜎sd𝜔

(s)
𝑡 , (9b)

which is illustrated in Fig. 2. The model takes as inputs the mass flow
rate 𝑄(i)

𝑡 [kg/s], and the ground temperature 𝑇 g [◦C]. The constant
𝑐v ≈ 4.186 [kJ/(kg K)] is the specific heat capacity of water. In this for-
mulation, three parameters are associated with each house — namely
the thermal capacity 𝐶 i [J/K], the thermal resistance 𝑅i [K/W], and the
diffusion scaling 𝜎i [◦C/

√

s]. The individual house temperatures 𝑇 (i)
𝑡 are

observed directly by the measurement device 𝑇 (i,obs)
𝑡 , but it is assumed

that the uncertainty of these measurements can be approximated by
Gaussian noise, which gives rise to the following observation equation

𝑇 (i,obs)
𝑡 = 𝑇 (i)

𝑡 + 𝑒(i)𝑡 , 𝑒(i)𝑡 ∼ 𝑁(0, 𝑉 𝑖
𝑡 ), (10)

In order to establish a flow-dependent variance construction, the logis-
tics function 𝑆 is used

𝑉 𝑖
𝑡 = V

[

𝑒(i)𝑡
]

= 𝜎2obs + 𝑆(−𝑄i(𝑡) + 𝑏) = 𝜎2obs +
𝐾

1 + e𝑎(𝑄i(𝑡)−𝑏)
, (11)

which acts as a smooth approximation to the Heaviside step function
𝐻(𝑄) = 𝟏𝑄<𝑏, as illustrated in Fig. 3. The purpose of this variance
construction is to decrease the weight of observations that are gathered
under low flow conditions, where the observations obviously contain
very limited information about the street temperature — as is illus-
trated in Figs. 6 and 7. This construction was seen to be necessary
5

Fig. 2. A drawing that demonstrates the interaction between street, house, and ground
with labels for states, observations, and inputs. The modelled system is that of the
proposed model and it is centred around the pipe. The temperature of the water
travelling through the pipe is the result of mixing the already present water of
temperature 𝑇 (𝑖)

𝑡 with that of the street of temperature 𝑇 (𝑠)
𝑡 , while heat is transferred

through the pipe to the surrounding colder ground proportional to the temperature
difference 𝑇 (𝑖)

𝑡 − 𝑇𝑔 .

Fig. 3. A plot of the logistics function in (11) with parameters 𝐾 = 1, 𝑎 = 0.5 and
𝑏 = 15 (as used in this work) which approximates to a step-function at 𝑏. The variance
increases towards 𝐾 for 𝑄 → 0 and vanishes for 𝑄 → ∞.

Fig. 4. A histogram of the flow rates for a specific house which illustrates the location
of the cut-off level as determined by the value of 𝑏 in (11).

in order to prevent the street temperature estimates from decreasing
according to the decreasing house temperatures during such periods of
low flow, i.e. no energy consumption. The parameter 𝑏 in Eq. (11) was
chosen based on inspection of flow rate histograms for the buildings
in that neighbourhood. An individual neighbourhood assessment must
be performed, since the lower flow rate threshold at which rapid
temperature decreases occur varies. A typical bi-modal flow histogram
from one particular house is shown in Fig. 4. The red dashed line marks
the threshold value of 𝑏 = 15 below which a given observation whose
flow satisfies 𝑄 ≤ 𝑏 will have its variance increased. The magnitude
of this increase lies in the range 𝑘 ∈

[

𝐾∕2, 𝐾). Fig. 5 demonstrates
the correlation between temperature and flow rate, by marking with
black dots the observations with flow rates below the set threshold.
In this study, the parameters of the logistics function will be set to;
𝐾 = 10 000 (maximum value), 𝑎 = 0.25 (steepness of the curve), and
𝑏 = 15 (midpoint of the function).

The house-specific thermal parameters 𝐶 and 𝑅 summarise the
thermal properties of the transportation system between street and
house. The system here should be interpreted as an idealisation of the
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Fig. 5. Observations of temperatures for two houses with indication (black dots) of
the observations where the flow rate is less than 𝑄 ≤ 20𝐿∕ℎ in correspondence with
he cut-off level seen in Fig. 4 and the associated curve in Fig. 3.

ntire pipe installations and the different environments that those are
mbedded in. The underlying assumption that the potentially huge
ariety of such installations can be described by the simple model in
qs. (9a)–(9b) enables a crude way of analysing houses for potential
ssues, like detecting poorly insulated pipes or potential leakages.

.3. Parameter estimation

The parameter estimation is carried out using the maximum like-
ihood approach. In this paper, two slightly different computational
ethods are applied, both of which rely on the R-package Template
odel Builder (TMB) [31]. The first method applies the intended
ethodology of TMB which is that of a generalised mixed-effects model,
hile the latter method employs the discrete Kalman filter. The filter is
lso implemented with TMB simply to draw on the package’s employ-
ent of automatic differentiation which yields the gradient (and also

he hessian with respect to the parameters) of the likelihood function
hich drastically reduces computation times. A comparison between

hese methods will be presented here in terms of speed, parameter
stimates and uncertainty.

In the mixed effects formulation, TMB employs the Laplace approx-
mation to integrate out the states Eqs. (9a)–(9b) which are considered
andom effects in this framework. The TMB procedure; the marginal
ikelihood 𝐿(𝜃) of the fixed effects 𝜃 by integrating out the random ef-
ects 𝑈 of the joint likelihood 𝐿(𝑈, 𝜃) using the Laplace approximation.

The marginal likelihood is

𝐿(𝜃) = ∫ 𝐿(𝑈, 𝜃)d𝑈, (12)

and the log-likelihood  is therefore

(𝜃) = log∫ exp(𝑈, 𝜃)d𝑈. (13)

A second-order Taylor expansion around the random effects maximum
𝑈̂

𝑈̂ = arg max
𝑈

(𝑈, 𝜃), (14)

of the joint log-likelihood  is

(𝑈, 𝜃) ≈ (𝑈̂ , 𝜃) + 1
2
(𝑈 − 𝑈̂ )𝐻(𝑈̂ , 𝜃)(𝑈 − 𝑈̂ )𝑇 . (15)

here 𝐻(𝑈̂ , 𝜃) is the hessian. The integral in Eq. (13) can then be
pproximated by inserting Eq. (15), which evaluates to unity (after
aving corrected for the missing factor of the normal distribution),
ince the integrand is then a multivariate normal density with mean
̂ and covariance matrix 𝐻 . The approximation is only exact if the
oint distribution is also Gaussian. The marginal likelihood can now be
omputed as

(𝜃) ≈ (𝜃, 𝑈̂ ) +
(𝑀 + 1)𝑁

2
log 2𝜋 − 1

2
logdet𝐻(𝑈̂ , 𝜃), (16)

here M is the number of smart meters and 𝑁 is the number of obser-
ations. For additional information about the Laplace approximation
nd its properties, see e.g. Madsen and Thyregod [32].
6

𝑈

In practice, when employing the TMB framework, the user writes
he negative log-likelihood as a C++ file which is then compiled and
mported as a function into R. In the present case, the likelihood
ontributions from a stochastic differential equation system come from
1) the (hidden) state transitions and (2) the state observations. The
ormer contribution is given by

t ∼  (t , 𝑃 t ), (17)

here 𝑈 t =
[

𝑇 (1)
𝑡 𝑇 (2)

𝑡 … 𝑇 (M)
𝑡 𝑇 (s)

𝑡

]

𝑇 is the random effects state
ector with mean t and covariance 𝑃 t (see Eq. (30)) which di-
ectly depend on 𝑈 t−1 through the one-step transition density. The
ontribution from the observations is given by

t ∼  (𝑈 t , 𝑉𝑡), (18)

here 𝑉𝑡 is given by Eq. (11).
In the case of the Kalman filter there is only one contribution to

he likelihood, due to the state updating scheme. The posterior state
t|t and covariance 𝑃 t|t estimates are obtained from updating the prior

stimates 𝑋t|t−1 and 𝑃 t|t−1 once new information 𝑌 t becomes available.
he updating scheme is

t|t = 𝑋t|t−1 +𝐾 t𝑒t , (19)

𝑃 t|t = (𝐼 −𝐾 t𝐻)𝑃 t|t−1(𝐼 −𝐾 t𝐻)𝑇 +𝐾 t𝑉𝑡𝐾
T
𝑡 , (20)

here 𝐾 t is the associated Kalman gain given by

𝐾 t = 𝑃 t|t−1𝐻
𝑇𝛴Y,t

−1, (21)

Y,t = 𝐻𝑃 t|t−1𝐻
𝑇 + 𝑉𝑡, (22)

ith innovation

t = 𝑌 k − ℎ(𝑋k|k−1), (23)

nd with 𝐻 =
dℎ(𝑢)
d𝑢

. The likelihood contribution arises from the

nnovation 𝑒t and the covariance matrix 𝛴Y,t as

(𝜃)t =
1
2
[

logdet𝛴Y,t + 𝑑t log 2𝜋 + 𝑒t𝛴Y,t𝑒
𝑇
t
]

, (24)

where 𝑑t is the number of available observations at time 𝑡.

2.4. Theoretical Resistance–Capacitance parameters in pipe

The theoretical values of the Resistance–Capacitance (RC) model of
a pipe can be computed based on physical knowledge of the pipe. The
thermal capacitance of water in the service pipe is computed as

𝐶 = 𝐴𝑐v𝜌. (25)

The pipes from the distribution pipe to the substation are usually DN25
pipes. If it is assumed that the inner diameter of the pipe is 0.0273 [m]
then 𝐶 = 2.45 [kJ/m K].

The resistance of the pipe is

𝑅 = 1
2𝜋𝜆p

ln
𝑑o + 2𝑥a

𝑑i
, (26)

with the thermal conductivity of insulation of the pipe as, 𝜆p =
0.028 [W/m K], outer diameter 𝑑o = 0.0337 [m], and insulation thickness
a = 0.0182 [m], which gives a resistance of 𝑅 = 4.16 [m K/W].

The theoretical estimates of the RC parameters will be used to
ompare them to the estimated RC parameters.

.5. First and second-order moments

The likelihood contributions of the stochastic differential equation
equire computing the expectation and variance of the one-step predic-
ions regardless of the use of the two methods. In the case of TMB, this
mounts to computing t and 𝑃 t and similarly for the Kalman filter

and 𝑃 . This will generally require integrating the first and
t|t−1 t|t−1
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second-order moments of the SDE forward in time, and while that is
possible using standard ordinary differential equation (ODE) solvers,
such an approach introduces both the choice of integral method and a
time-step 𝛥𝑡. The accuracy of the integration will depend on both, but
since integration methods are standard (e.g. a 4th order Runge–Kutta
method), the time-step will introduce a trade-off between computing
time and integration accuracy. However, this can be avoided altogether
if the moment equations can be solved analytically, and that is possible
for the presented model. In particular, the system in Eqs. (9a)–(9b) is
linear but parameters are time-dependent due to the flow rate, and
an analytical solution is therefore not tractable. A common solution is
to impose a zero-order hold (ZOH) condition on the time-dependence
(i.e. 𝑄𝑖(𝑡) = 𝑄𝑖,𝑘 for 𝑡 ∈

[

𝑡𝑘 , 𝑡𝑘+1
]

) such that the system becomes
iece-wise linear and time invariant. Imposing this on the system in
qs. (9a)–(9b) for the 𝑀 houses yields the matrix–vector form

[

𝑇𝑡
𝑇 (𝑠)
𝑡

]

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

[

𝐴1 𝑆
0 0

]

⏟⏞⏞⏟⏞⏞⏟
𝐴

[

𝑇𝑡
𝑇 (𝑠)
𝑡

]

+
[

𝐵1
0𝑇𝑔

]

⏟⏟⏟
𝐵

⎞

⎟

⎟

⎟

⎟

⎟

⎠

d𝑡 +
[

𝜎 0
0 𝜎𝑠

]

⏟⏞⏞⏟⏞⏞⏟
𝐺

[

d𝜔𝑡
d𝜔(𝑠)

𝑡

]

(27)

=
(

𝐴
[

𝑇𝑡
𝑇 (𝑠)
𝑡

]

+ 𝐵
)

d𝑡 + 𝐺
[

d𝜔𝑡
d𝜔(𝑠)

𝑡

]

, (28)

here the auxiliary matrices and vectors have been introduced,

1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎1 0 0 0 0
0 𝑎2 0 0 0
0 0 ⋱ 0 0
0 0 0 𝑎𝑀−1 0
0 0 0 0 𝑎𝑀

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑠1
𝑠2
⋮

𝑠𝑀−1
𝑠𝑀

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑏1
𝑏2
⋮

𝑏𝑀−1
𝑏𝑀

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝜎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜎1 0 0 0 0
0 𝜎2 0 0 0
0 0 ⋱ 0 0
0 0 0 𝜎𝑀−1 0
0 0 0 0 𝜎𝑀

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

ith the lowercase variables given as

i = −(𝑠i + 𝑏i), 𝑠i = 𝐶−1
i 𝑄i,k𝑐p, 𝑏i =

(

𝐶 i𝑅i
)−1 ,

nd where

𝑡 =
[

𝑇 (1)
𝑡 , 𝑇 (2)

𝑡 ,… , 𝑇 (𝑀)
𝑡

]𝑇
, d𝜔𝑡 =

[

d𝜔(1)
𝑡 , d𝜔(2)

𝑡 ,… , 𝜔(𝑀)
𝑡

]

.

he solution to this (𝑀+1)-dimensional system of stochastic differential
quations from time 𝑡 = 𝑡k to 𝑡 = 𝑡k+1 can be written using the Itô
nterpretation of the stochastic differential equation as

k+1 = e𝐴𝛥𝑡𝑥k + ∫

𝑡k+1

𝑡k
e𝐴𝛥𝑡s𝐵d𝑠 + ∫

𝑡k+1

𝑡k
e𝐴𝛥𝑡s𝐺d𝜔s, (29)

sing the time differences 𝛥𝑡 = 𝑡k+1 − 𝑡k and 𝛥𝑡s = 𝑡k+1 − 𝑠 and using
he zero-order hold assumption across these time intervals. Only the
ransitional mean and covariance must be computed and these remain
aussian by the linearity of the system. They are given by

E
[

𝑥k+1
]

=𝐴̂E
[

𝑥k
]

+ 𝐵̂, (30a)
[

𝑥k+1
]

=𝐴̂V
[

𝑥k
]

𝐴̂𝑇 + 𝑄̂, (30b)

where the involved matrices are

𝐴̂ = e𝐴𝛥𝑡, (31)

𝐵̂ = ∫

𝑡𝑘+1

𝑡𝑘
e𝐴𝛥𝑡𝑠𝐵d𝑠, (32)

̂ = ∫

𝑡𝑘+1

𝑡𝑘
e𝐴𝛥𝑡𝑠𝐺𝐺𝑇 e𝐴

𝑇 𝛥𝑡𝑠d𝑠, (33)

hich can be calculated by computing the matrix exponential of the
ugmented matrices

exp
([

𝐴 𝐵
]

𝛥𝑡
)

=
[

𝐴̂ 𝐵̂
]

, (34)
7

0 0 0 𝐼
exp
([

−𝐴 𝐺𝐺𝑇

0 𝐴𝑇

]

𝛥𝑡
)

=
[

𝑉11 𝑉12
0 𝑉22

]

, (35)

and subsequently extracting the variance as 𝑄̂ = 𝑉 𝑇
22𝑉12 [33]. The

elements of these matrices are

𝑄̂𝑖,𝑖 =
𝑠2𝑖
2𝑎3𝑖

𝜎2𝑠
[

e2𝑎𝑖𝛥𝑡 − 4e𝑎𝑖𝛥𝑡 + 2𝑎𝑖𝛥𝑡 + 3
]

+ 1
2𝑎𝑖

𝜎2𝑖
[

e2𝑎𝑖𝛥𝑡 − 1
]

, (36)

𝑄̂𝑖,𝑗 =
𝑠𝑖𝑠𝑗

(𝑎𝑖 + 𝑎𝑗 )𝑎2𝑖 𝑎
2
𝑗

𝜎2𝑠 ⋅
(

e(𝑎𝑖+𝑎𝑗 )𝛥𝑡𝑎𝑖𝑎𝑗 − e𝑎𝑖𝛥𝑡𝑎𝑗 (𝑎𝑖 + 𝑎𝑗 ) (37)

− e𝑎𝑗𝛥𝑡𝑎𝑖(𝑎𝑖 + 𝑎𝑗 ) + 𝑎2𝑖 (𝑎𝑗𝛥𝑡 + 1) + (𝑎2𝑗𝛥𝑡 + 𝑎𝑗 )𝑎𝑖 + 𝑎2𝑗

)

,

𝑄̂𝑀+1,𝑖 =
𝑠𝑖
𝑎2𝑖

𝜎2𝑠
[

e𝑎𝑖𝛥𝑡 − 𝑎𝑖𝛥𝑡 − 1
]

, (38)

for 𝑖 = 1, 2,… ,𝑀 and 𝑗 = 𝑖+1, 𝑖+2,… ,𝑀 . The last diagonal element is
𝑄̂𝑀+1,𝑀+1 = 𝜎2𝑠𝛥𝑡. The non-zero elements of 𝐴̂ lie on the diagonal and
the last column i.e.

𝐴̂𝑖,𝑖 = e𝑎𝑖𝛥𝑡, (39)

𝐴̂𝑀+1,𝑖 =
𝑠𝑖
𝑎𝑖
(e𝑎𝑖𝛥𝑡 − 1), (40)

for 𝑖 = 1, 2,… ,𝑀 . The last diagonal element is 𝐴̂𝑀+1,𝑀+1 = 1. The first
𝑀 entries of 𝐵̂ are

𝐵̂𝑖 =
𝑏𝑖
𝑎𝑖
(e𝑎𝑖𝛥𝑡 − 1)𝑇𝑔 , (41)

for 𝑖 = 1, 2,… ,𝑀 , and 𝐵𝑀+1 = 0.
The likelihood computations can therefore be carried out without

having to invoke costly integration techniques, simply by computing
the one-step moments in Eq. (30) by calculating these elements nec-
essary to directly construct 𝐴̂, 𝐵̂ and 𝑄̂. The source code for the
implemented likelihood functions for the two methods is available
through a GitHub repository.1

3. Results

This section presents the results in terms of parameter estimation
using the two proposed approaches, the TMB and Kalman filter to
estimate the street temperature from smart meter data. Computation
time and difference between the parameter estimations will be com-
pared between the two approaches to investigate if one method is
more advantageous. The results between the two different areas are
also compared to validate the model’s generalisability as the dynamics
between the areas are different. The performance of the model in
different seasons is also investigated. Finally, the challenges of the
model are discussed. The data used in this paper is presented before
the results from the proposed approaches are discussed.

3.1. Data

The data used in this study was provided by the district heating
utility in Brønderslev, Brønderslev Forsyning. The data consists of mea-
surements from smart meters in individual buildings and measurement
wells from two critical areas inside the Brønderslev district heating
network. Only a subset of the smart meters is needed for the proposed
method. The smart-meter measurements used in this study are from 30
different single-family houses: 15 from each area. They consist of time
series of supply temperature [◦C], return temperature [◦C], flow [L/h],
energy [kWh], volume [m3] with associated timestamps. The measure-
ment wells are located in the distribution network at street level before
the houses and they measure the forward temperature [◦C] and the

1 https://lab.compute.dtu.dk/hgbe/smartmeters-kalmanfilter-tmb.

https://lab.compute.dtu.dk/hgbe/smartmeters-kalmanfilter-tmb
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Fig. 6. The plot demonstrates for an interval of one hour, a different number of readings at different timestamps when comparing smart meter data from each house. Two houses
are shown with colours while the other houses are illustrated as grey. The two houses are highlighted with colour to illustrate the difference in the dynamics between the two
areas.
return temperature [◦C]. In order not to violate privacy and comply with
he General Data Protection Regulation (GDPR), Brønderslev Forsyning
ade the smart-meter data anonymous before making it available for

he study by not disclosing the location of the houses. Hence, the only
nformation given in the data is which of the two areas the house
elongs to, and that houses are grouped closely together for each area.
nly metering data has been used to estimate the distribution network

emperature at street level, whereas the temperature measurement from
he wells has only been used to validate the results.

.2. Measurements from smart meters and measurement wells

In this paper, only temperature and flow measurements from the
mart meters are used. The objective of this study is to estimate the
upply temperature in the distribution pipe in the street that feeds into
he houses where the smart meters are installed, without using the
earby measurement well. The temperature measurements from the
ell will only be used for model validation. The measured variables
re denoted as follows:

etwork Temp. (Street) : 𝑇 s
𝑡 , 𝑡 = 1,… , 𝑁, (42)

Temp. at houses : 𝑇 (i)
𝑡 , 𝑡 = 1,… , 𝑁, 𝑖 = 1,… ,𝑀, (43)

Flow at house : 𝑄(i)
𝑡 , 𝑡 = 1,… , 𝑁, 𝑖 = 1,… ,𝑀, (44)

here the subscript 𝑡 is the time index (𝑁 number of observations), and
he superscript 𝑖 is a label of the smart meter (or house) number and

is the number of smart meters. The measurements from the smart
eters in Area 1 and Area 2 were obtained from 1 July 2018 to 1

uly 2019, and 1 January 2018 to 25 September 2020, respectively.
he resolution of the smart-meter data is not fixed and the number of
eadings each day changes over time. The measurements from the wells
hat represents the temperatures in the streets from Area 1 and Area 2
re on two minutes resolution, and the periods are from 4 December
018 to 8 January 2020 and 12 September 2019 to 12 September 2020.

Smart meters are usually located close to the substation inside the
ouses where they measure district-heating information. The hot water
s delivered to the substation by a service pipe that is connected to the
istrict heating distribution network at street level as shown in Fig. 2.
easurement wells are located at the critical areas in the distribution

etwork and are usually placed before the hot water enters the first
ouse in the area at street level. Unfortunately, the measurements from
he two wells do not overlap during a cold period (January) or warm
eriod (summer) as Fig. A.15 shows. Also, there are some errors with
he measurements over a longer period for both areas.
8

Fig. 7. The plots visualise how the resolution of the aggregation can result in less
information on the temperature dynamics of the pipe. The upper and lower plots
show data from Area 1 and Area 2. The raw supply temperature and flow with two
different aggregation resolutions, 5 min and 30 min are visualised together. The flow
demonstrates the heating dynamics in more detail, i.e. how the temperature increases
and decreases with the flow behaviour.

Time series plots of the supply temperature and flow from the smart
meters at the houses in both areas for a subset of the data are shown
in Fig. 6. Two random houses from both areas are visualised with
coloured lines, while the rest are presented as grey. These two houses
are selected to highlight the different dynamics between the areas and
seasons. The dynamics are very different between the areas, while
houses in the same area tend to show similar behaviour, i.e. similar
houses with similar control strategies. There are also seasonal patterns,
e.g. usually there is no need for space heating during summer so the
temperature is lower during summer as the heat demand is significantly
lower compared to cold periods, e.g. January. This can also be seen
in Table 1, which lists the quantiles of the temperature and flow
measurements in January and June. As expected, the temperatures are
higher during January. Due to the significant difference between the
areas, each area will be discussed separately in the following.

Area 1: demonstrates rather constant temperature, especially during
cold periods, as shown in both Fig. 6 and Table 1. Hence, there is
always some consumption of heat, as the flow is almost never zero
(see 𝑄5 for flow in Table 1). However, during a warmer period, less
heat consumption is needed and therefore there is frequently no heat
consumption.
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Table 1
The table presents flow and temperature measurement quantiles from both areas
for the periods January and June in 2019. The differences in both flow rate and
temperature between June (summer) and January (winter) are very noticeable for all
shown quantiles.

𝑄5 𝑄25 𝑄50 𝑄75 𝑄95

January

Area 1 Flow [L/h] 53.36 87.67 107.5 133.09 182.5
Temp [◦C] 66.10 68.30 69.7 71.30 72.9

Area 2 Flow [L/h] 3.59 12.73 40.75 94.0 172.30
Temp [◦C] 43.34 55.70 61.10 65.1 68.70

June

Area 1 Flow [L/h] 13.00 21.00 30.0 46.09 83.0
Temp [◦C] 52.50 56.80 59.5 61.20 63.3

Area 2 Flow [L/h] 7.00 13.00 17.33 22.0 56.37
Temp [◦C] 42.80 48.90 50.30 51.8 56.60

Area 2: demonstrates a more dynamic operation where the flow
is frequently turned on and off (see Fig. 7 for an example). The hot
water in the service pipe frequently loses heat to the surroundings, as it
becomes still in the pipe for long periods when the flow is low. Hence,
there is frequent temperature drops in Fig. 6 and a large gap in the
quantiles in Table 1, most notably during January.

Area 1 has a more constant behaviour, as both the temperature and
flow do not change rapidly. Area 2 shows more of an on/off behaviour,
i.e. turning on and off the heating over time. There is a significantly
larger variability in Area 2 in the temperature readings. Area 2 might
therefore be low-energy buildings where the substation is controlled
intelligently compared to the traditional operation of substations where
only the outside temperature is used. It can be assumed that Area 1
uses traditional operations and the buildings are likely to be older.
Therefore, they usually have lower energy efficiency and need more
heat to keep the indoor climate comfortable. The on/off control strategy
impairs the quality of the temperature measurement from the smart
meters. The water in the service pipe becomes still and therefore it
does not give an accurate representation of the temperature in the
distribution pipe. Consequently, this needs to be considered when
estimating the temperature, to avoid including these periods where
the signal becomes unreliable. The seasonal behaviour demonstrated
in both areas occurs when the ambient air temperature has increased
above a certain cutoff temperature where no space heating is required
to feel comfortable inside, as space heating is highly correlated with the
ambient air temperature. Hence, the quality of the temperature signal
is also seasonal-dependent, as the amount of flow is affected by the
desired space heating.

Bergsteinsson et al. [14] describe that each smart meter is unique,
as the quality of the signal depends on the smart meter and the
quality of the temperature signal is flow-dependent. Smart meters send
instantaneous values with different resolutions, as is highlighted in
Fig. 8. The plot visualises the temperature readings from all houses in
Area 1 over a one-hour period. Note that one house did not send any
readings during this period. Some meters only send one value, while
others send multiple. Therefore, the data from the smart meters needs
to be resampled, as required by the method used to estimate the supply
temperature.

In this study, the discrete-time Kalman filter is used to estimate the
house and street temperatures. It is therefore convenient to have the
smart-meter data resampled at the same time points. As demonstrated
in Fig. 8, the data does not have a fixed resolution. The purpose of this
method is to estimate the temperature in the street distribution pipe
from historical data, but it is not used to predict future temperature
values. The smart-meter data is therefore aggregated with the desired
resolution by rounding to the nearest time point. An appropriate reso-
lution needs to be used such that as little as possible of the information
vital for the analysis is lost. Fig. 7 shows the time series of the raw
9

Fig. 8. The plot demonstrates an interval of one hour. There is a different number of
readings with different timestamps when comparing smart-meter data from each house.
There is also one house missing in this period.

supply temperature data and aggregates by rounding to 5 min reso-
lution and 30 min. The flow is also plotted to highlight the heating
dynamics of the houses and between the areas. Because of the on/off
dynamics of the heating for House 5 in Area 2, the importance of the
resolution can be seen more clearly than in Area 1. When the flow is
shut off, the temperature starts to decrease and the rapid drop happens
quite fast. Therefore, having all information on how the temperature
decreases is important. Hence, using the correct aggregation resolution
becomes essential to capture the heat dynamics of the service pipe.
Investigating the difference between 5 min and 30 min in the drop,
the 30 min resolution results in less information, as expected.

The smart-meter data in this study will be resampled to the same
5 min resolution and using one month from cold and warm periods
to demonstrate the performance of the proposed method of estimat-
ing the distribution network temperature at street level. In Area 1,
measurements from January 2019 and June 2019 will be used to
estimate the parameters of the model. The estimated temperature will
be validated by comparing it to the measured temperature from the
well. The validation will be done in the same period as the parameters
are estimated, as the well temperatures are not used in the model
estimation and this method’s purpose will only be used to estimate the
temperature from the previous day when the smart-meter data arrives.
Area 2 will use January 2020 and June 2020 to estimate the model
parameters. However, during January it is not possible to validate the
estimated temperature, as the measured temperature at the well for this
period is wrong, as seen in Fig. A.15.

3.3. Settings and procedure

The results presented in the following section were obtained using
the Kalman Filter method, which proved the fastest and most robust.
The parameter estimation is carried out using the Kalman Filter and
the smoothed estimate of the states and uncertainties are then found
with the mixed-effects method by supplying the estimated parameters.
The parameter estimation is roughly ten times faster using the Kalman
filter method, as shown in Table A.2. A linear fit to this data in the log–
log domain shows that the computation time for the Kalman filter and
mixed-effects method grows by 𝑀2.6 and 𝑀2.2 respectively. The faster
omputation time using the Kalman Filter is explained by a much lower
ntercept. There was no drawback to the faster parameter estimation,
ince results were consistent regardless of the method used (Table A.3).

total of fifteen houses were used, and data from a one-month period
ontaining 15 × 8353 observations of the house temperatures (≈80%
re NA-values) and the same amount of house flow rate observations.

The following upper and lower parameter bounds were used
(i)
upper =

[

𝐶 (i)
upper, 𝑅

(i)
upper, 𝜎

(i)
upper

]

= [500, 1500, 2] , (45)

𝜃(i)lower =
[

𝐶 (i)
lower, 𝑅

(i)
lower, 𝜎

(i)
lower

]

=
[

1, 1, 10−5
]

, (46)
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Fig. 9. Plots showing the estimated street temperature and the measured house temperatures. The top and bottom plots show the estimation from winter and summer respectively,
and plots on the left and right belong to Area 1 and Area 2 respectively. The measured street temperature that is the critical point (CP) temperature is plotted for Area 1 to
demonstrate the performance of the proposed method. These measurements were not available for Area 2.
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for each house to ensure realistic estimates (see Eqs. (25) and (26)). The
parameter bounds were imposed naturally by introducing the inverse
logit domain transformation

𝜃 =
(

𝜃upper − 𝜃lower
)

𝑆(𝜃logit ) + 𝜃lower, (47)

here 𝑆(𝑥) = (exp(−𝑥) + 1)−1. The diffusion parameters 𝜎𝑖 were gen-
rally very uncertain, thus difficult to estimate. It was necessary to
ntroduce a lower bound constraint to avoid numerical instability as a
onsequence of diffusion parameters tending towards zero. The obser-
ation variance behaved in a similar fashion and was fixed at 𝜎2𝑜𝑏𝑠 = 1

(which amounts to allowing temperature fluctuations on the order of ±2
egrees). The uncertainty is a rough approximation of the uncertainties
nformed by a specific smart meter manufacturer [34], and is reported
o be 3%–5% (depending on the flow), which amounts to 1.5–2.5 ◦C
ssuming a temperature of 50 ◦C.

.4. Empirical results

The smoothed-state reconstructions for the two areas are presented
long the rows, with an estimate for a winter month (January) and
summer month (June) along the columns, in Fig. 9. A pronounced

ifference can be seen between the dynamics in the two areas; Area
displays rather stable house temperatures relative to Area 2 where

hey surge up and down. This surging is driven by similar behaviour in
he flow, as discussed in Section 3.1. Hence, the necessity of having
he flow-dependent observation noise as shown in Eq. (11) is clear.
ne advantageous effect of the flow-dependent implementation is that

he street temperature estimate is less prone to rapid changes during
eriods where all flows simultaneously decrease below the set thresh-
ld. This occurs because the estimated street temperature attempts to
ollow the fast dynamics of the houses, but such behaviour is contrary
o its slower temperature dynamics. The implementation was therefore
10

ecessary in order to achieve more realistic and accurate results. It can
e argued that, even though increasing the number of houses would
ecrease the probability that all flows decrease below the set thresh-
ld simultaneously, the implementation remains valuable in order to
ppropriately penalise the impact of low-flow observations.

The model performance can be validated by comparing the esti-
ated street temperature with the critical point measurements in Area
. The street temperature predictions seem to have captured the overall
rends and oscillations quite well, although a systematic bias is evident
uring summer, and in winter a slight temporal delay is seen. Com-
aring the two areas, the effect of having accurate information (due to
he high flow) is evidently a smoother temperature curve for all houses
nd the street. The estimation in Area 2 displays faster variations as
result of the rapid variance changes and differences in the number

f houses that provide information. In particular, inspecting the two
ighlighted temperatures (𝑇 (1)

𝑡 and 𝑇 (2)
𝑡 ) emphasises that whenever

nformation becomes available (and the flow is high) the individual
ouses surge upwards to some limit from where they determine the
treet temperature estimate. A primary challenge with the estimation
n Area 2 is to prevent the slower dynamics of the street from being
ontrolled by the much faster dynamics of the houses. This is a trade-
ff between measurement variance and obtaining what appears to be
dequately slow changes in the street temperature estimates. The effect
f the variance increase cannot be assessed due to the lack of critical
oint measurements in this area.

It was discovered that the estimation accuracy is sensitive to temper-
ture observations that are much higher than expected, e.g. from poorly
alibrated sensors. The challenge of detecting such problematic houses
s difficult to solve in general. These houses are identified by inspection
f the thermal resistances 𝑅i because they tend to hit the upper bound.

The modeller should be aware of the possibility that such houses have a
controlling influence on the street temperature. In this particular case,
the thermal resistances of both House 8 and House 4 were converging

to the boundary, although only the former had observations that were
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Fig. 10. The estimated street temperature using all houses and after removing the two
ouses whose thermal resistance estimates hit the boundary 𝑅i = 1500. The estimate is
ot significantly improved until the second house is removed.

Fig. 11. Boxplots of estimated thermal capacities 𝐶 for the two areas and two months.
The median values are clearly largest in Area 1 during the winter month but a few
outliers are seen in Area 2 regardless of season.

much above the critical point measurements. The effect of omitting
these two houses from the estimation was investigated after omitting
none, one or both. The estimated street temperatures are compared
to the critical point temperatures in Fig. 10, and the associated mean
average errors (MAEs) are

None ∶ MAE = 0.46

House 4 ∶ MAE = 0.76

House 8 ∶ MAE = 0.50

ouse 4 & 8 ∶ MAE = 0.32

his shows that the MAE increases (0.3/65%) after removing House
, increases slightly (0.04/8%) after removing House 8 and decreases
0.14/30%) after removing both House 4 and House 8. The surprising
utcome in the former case was further investigated and apparently it
ccurs because only a single house will act as a controller of the street
emperature. In this case, House 4 dominates the street temperature es-
imation, so if removed House 8 will start to dominate the temperature
stimation which has significantly higher observations and thus pulls
he estimated street temperature up towards itself. In contrast, there is
o effect from omitting House 8, because House 4 remains in control.

.5. Thermal parameters and house dynamics

A statistical overview of the obtained values of 𝐶 i and 𝑅i is provided
n Figs. 11 and 12, respectively. The former figure shows that the
stimated winter capacities from Area 1 stand out from the others by
aving a significantly higher median value, and the parameters are
enerally more dispersed in Area 1 regardless of period (as evident from
he interquartile ranges of 131, 81, 114 and 47, respectively). Comparing

areas shows that the dispersion is high during winter and low during
summer. This conclusion is reversed when inspecting the estimated
resistances, but could not be explained by strong correlations between
11
Fig. 12. Boxplots of the logarithmic value of the thermal resistance 𝑅. There is a
lear difference between the two areas, and generally speaking the interquartile range
s larger during the summer.

Fig. 13. The decaying exponential functions exp(−𝑡∕𝜏) which depict how fast the
temperature decreases from some initial set-point temperature down to the ground
temperature 𝑇𝑔 in the individual house systems. The dashed line shows when it has
decayed to 37% of its initial value.

𝑅i and 𝐶 i. The estimates and the estimated confidence intervals for
winter and summer estimation are shown in Table A.4.

The stochastic differential equations describing each house give rise
to time constants (𝜏) which can be interpreted as the duration after

hich the temperature has decreased by roughly 36%. This yields a
traight-forward way to compare and characterise the thermal prop-
rties of the service pipe at each house in a single quantity, and this
nables quick identification of e.g. bad insulation, leakage or out-dated
nstallations. The time constants are the eigenvalues of the system
atrix 𝐴 in Eq. (27)

i =
(

𝑐p
𝑄i
𝐶 i

+ 1
𝑅i𝐶 i

)−1
≈ 𝑅i𝐶 i. (48)

The approximation is only valid when the flow is low (approaching
zero), since the former term then becomes very small. The time con-
stants are illustrated as decaying exponential functions in Fig. 13 for
the two areas in the winter month. Evidently, certain houses can be
identified as cooling down much more rapidly than the others; the
houses where temperature converges to zero instantly. In Area 2, there
seems to be two groups of houses: one which slowly converge to
zero and another which cool down faster. There also seem to be two
houses that cool down faster than other houses in the same area. This
information could be used to investigate whether there is a problem

with the service pipe.
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Fig. 14. The figure shows the one lag value of the ACF from the prediction errors for
each house for the two areas in separate plots. It highlights that, when the flow is low,
the model does not capture the dynamics of the temperature adequately.

3.6. Model validation

Model validation is always important, but in the presented case
there are a few challenges of applying e.g. the autocorrelation function
(ACF). One is that the data used in this study does not have a fixed
resolution (Fig. 8), and the more difficult one is that the model does
not try to capture the behaviour at all times. When the flow is low,
the dynamics of the temperature is not captured well by the model,
as the dynamics will be more influenced by e.g. the placement of the
smart meter inside the house and higher heat loss in the service pipe
due to the slow transportation time. In the model, this is handled by
increasing the observation variance. However, the 1-step residuals will
show a very large autocorrelation in these situations (Figs. A.16 and
A.17) leading to a very large lag-one autocorrelation for the overall
data. Disregarding data when the flow is high results in smaller auto-
correlation (Fig. 14). Even with these reservations, it seems clear that,
at least for some houses, the lag-one autocorrelation is high, indicating
that some model deficiencies could be addressed in future work.

Also, as an approximation, the temperature distribution over the
service pipe is is assumed to be uniform; i.e. the discretisation which
results in Eq. (7). This assumption is only valid when flow is high.
Hence, the temperature distribution is not uniform during situations
when flow is low. Also, the transportation time of the water moving
will therefore take longer. It can be calculated from

𝑄 = 𝜌𝑉 =
𝜌𝐴𝐿
𝑡

→ 𝑡 =
𝜌𝐴𝐿
𝑄

, (49)

here 𝑄 [kg/s] is the mass flow rate, 𝜌 [kg/m3] is the density of the
ater, 𝑉 [m3∕s] is the volumetric flow rate, 𝐴 [m2] is the cross sectional
rea of the pipe, 𝐿 [L] is the length of the pipe, and 𝑡 [s] is the time.
ome of the pipe properties needs to be assumed, for instance that the
ipe is a DN25 with inner diameter of 0.0273 [m], the length of the pipe
s 10 [m] and the flow is 50 [kg/h], then the transportation time can be
omputed,

=
997 [kg∕m3](𝜋(0.0273 [m])2∕4)10 [m]

50 [kg∕h]∕60 [h∕min]
≈ 7 min. (50)

In this example, the transportation time is longer than the reso-
ution time of the data used in this study, which indicates that the
niform temperature distribution is not valid and could lead to higher
utocorrelation in the errors.

. Discussion

This paper modelled the thermodynamics of a service pipe that
elivers heat from a distribution pipe in a district heating network to
onsumers’ substations. A partial differential equation of the thermody-
amics in the service pipe was presented, and then approximated by a
tochastic differential equation. Using this set of equations, an approach
as established to obtain temperature feedback at arbitrary points in
12
he district heating network by using measurements from a group of
mart meters located inside single-family houses close to the chosen
oint. The network temperature is the temperature of the hot water in-
ide the distribution pipe before it delivers hot water to the consumers’
ervice pipe. The street temperature was modelled as a random walk.

combined SDE model composed of the street temperature connected
o all of the houses’ service pipes through identical Resistance-Capacity
DEs was constructed. This automatically restricts the street pipe tem-
erature to at least as high as the temperature measurements from the
mart meters. It was shown that the presented methodology produced
ccurate results when compared to the measured network temperatures
n a single area with fifteen houses. In another area of fifteen houses,
t was shown how to deal with rapidly decreasing temperatures when
he flow rates become too low, by increasing the uncertainty of these
bservations.

The parameter estimation was carried out using two different meth-
ds, namely a discrete Kalman filter and a mixed-effects method, both
mplemented as C++ files and used with the R package TMB. The
atter was the intended formulation using TMB while the former only

took advantage of the automatic differentiation provided by TMB. The
speed-up gained using C++ together with automatic differentiation
is substantial, and results showed that the computation time for the
Kalman filter method was approximately ten times faster than that of
the mixed-effect formulation. For this reason, parameter estimation was
carried out using the Kalman filter, while smoothed-state estimates and
variances were calculated using the mixed-effects formulation.

The smoothed-state estimates are presented here since these are
more appropriate than one-step prediction estimates due to the in-
sample use case. Thus, because the model is intended to assess the
feedback from the network for computing a transfer function for the
network characteristics, e.g. time delay and temperature loss in the
system, the posterior state estimates that use all available information
are appropriate. In a concrete scenario, one could imagine that the
previous 24 h of data are sent from the smart meters once per day.
This information can then be used for temperature optimisation of
the supply temperature at the plant with the aim of reducing the
heating cost and heat losses in the system by lowering the supply
temperature at the plant. The ability to establish temperature feed-
back in district heating networks opens many possibilities for utility
companies to improve their operation. Most importantly, it gives the
ability to use controllers for data-driven temperature optimisation of
the network. Temperature optimisation reduces the heat loss and lower
the needed network supply temperature, and thereby the operational
cost of the heat production is reduced. It furthermore makes physical
measurement wells in the network redundant, reducing costs, planning
time, installations and maintenance. The feedback becomes flexible
since any group of houses can be selected to establish a new network
temperature. This is highly beneficial for the utility company, since the
location where the highest temperature loss in the network will vary
across time, due to deterioration of pipes, replacement of older pipes
with newer ones, leakage and so forth. Finally, using smart meters can
make multi-temperature zones inside the network more feasible, where
more local heat sources can be added to the network. Thus, lowering
the operating temperature in the grid using temperature optimisation
and having more detailed information from the grid will give rise to
more decentralised heat sources. For instance, heat sources such as
heat pumps, waste heat from industries, and solar thermal collectors
(with thermal storage systems) can be included to provide heat to
consumers. This will also increase the efficiency of sector coupling with
the electricity sector, where the renewable energy systems are better
utilised.

The authors argue that the presented model is advantageous due
to (1) its relative simplicity, (2) its ability to handle scenarios with

a lot of information, and (3) its ability to assess thermal properties
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and the outlier detection possibilities that this enables. In particular, it
was proposed that houses with resistance lying on the upper boundary
should be omitted from the analysis. A few issues are, however, worth
mentioning: Firstly, the choice of a random walk to estimate the street
temperature generally creates poor conditions for long-term forecasting
because its variance increases linearly with time. While this is of no
concern here due to the in-sample model purposes, should one use
the model for predictions it is crucial that the uncertainty assessment
is corrected. Therefore, in order to improve the forecastability of the
proposed method, it would be necessary to replace the random walk
using some model. For instance, the Ornstein–Uhlenbeck process could
be used, although that would require some assumptions or knowledge
about the parameters that will have to be derived from the forwarded
temperature at the district heating facility. A second issue is the as-
sumption that the temperature distribution over the service pipe is
uniform. however, this assumption is not valid when the flow is low
as the flow would also not be constant through the service pipe. It
also depends on the properties of the pipe, e.g. the diameter and
length. One suggestion for model extension would be to increase the
model order by dividing the pipe into multiple segments to model the
temperature distribution over the pipe. This extension could lower the
autocorrelation of the prediction errors.

5. Conclusion

This paper has demonstrated how smart-meter data can be used
to improve the operation of a district heating network by establishing
temperature feedback of the network. Temperature feedback is highly
valuable for temperature control of the network. Simplified descriptions
using stochastic differential equations are formulated from considering
partial differential equations that describe the thermodynamics of the
hot water in the service pipe from the distribution pipe to consumer
substations. A random walk is used to model the temperature variations
in the distribution pipe that is connected to all houses. The street
temperature and thermal parameters of the model are estimated by
minimising the negative log-likelihood function using a discrete Kalman
filter. Smoothed state estimates are subsequently computed using the
mixed-effects formulation in TMB. The results show that the proposed
method can mimic the measured street temperature accurately when
compared to observations. It is important that houses whose ther-
mal parameters hit the upper boundary are removed to reduce the
estimation bias in the street temperature. The estimation procedure
entails that smart-meter data arrives daily and contains measurements
with same resolution from the past 24 h. The procedure uses this
information to estimate the network temperature for the past 24 h.
The proposed method further allows for potential identification of
houses with e.g., bad insulation or leakages. They can be identified
by inspecting whether the estimated thermal resistance, capacity and
resulting time constant of a particular house, lie outside of the expected
range.

The possibilities for future work for using smart meters to enhance
the operation of district heating networks are endless. Hence, the util-
ities have become very data-rich and can use this information to learn
how the network is performing. Utilising this opportunity will help dis-
trict heating to become more energy efficient in the transformation to
RES and increase its flexibility. The extension of the proposed method
in this paper would be to improve the forecasting ability and validate
its potential for on-line control of supply temperature at the plant.
In future work, the authors also aim to investigate model extensions
e.g., by dividing the service pipe into multiple segments. Furthermore,
a simulation study could be beneficial to investigate the estimation of
R and C parameters of the service pipe.
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ppendix

See Figs. A.15–A.17 and Tables A.2–A.4.

Table A.2
The approximate computation times (seconds) for parameter estimation using either
the Kalman Filter or the mixed-effects method as a function of the number of houses
𝑀 . The dimensions of the system are 𝑀 +1 and the number of parameters are 3𝑀 +1.
The estimation is based on one month of data with a sampling time of 5 min, which
corresponds to 8350 temperature observations for each house, although roughly ≈80%
are missing values (NA-values).

Number of houses [𝑀] Kalman Mixed-Effects Ratio

2 1 29 1:22
3 4 59 1:15
4 6 101 1:18
5 11 140 1:13
6 16 206 1:13
7 26 282 1:11
8 33 416 1:13
9 54 518 1:10
10 69 685 1:10
11 86 829 1:10
12 118 1157 1:10
13 143 2112 1:15
14 168 2273 1:14
15 198 2266 1:11
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Table A.3
The thermal parameter estimates for 10 houses using the Kalman or the mixed-effects
model formulations. The estimates are seen to be identical for all practical purposes.

Parameter Kalman TMB Difference

𝐶1 153 155 2
𝐶2 11 12 1
𝐶3 254 258 3
𝐶4 29 30 1
𝐶5 355 358 3
𝐶6 472 478 6
𝐶7 5 5 0
𝐶8 8 14 5
𝐶9 335 341 6
𝐶10 238 240 2
𝑅1 245 245 0
𝑅2 648 648 0
𝑅3 219 219 0
𝑅4 1085 1084 1
𝑅5 185 185 0
𝑅6 125 125 0
𝑅7 619 619 0
𝑅8 1501 1501 0
𝑅9 266 266 0
𝑅10 450 450 0

Fig. A.15. The figure shows the time series of the available temperature measured at
the wells for both areas. The wells are located before the houses. Notice, that there
are some problems with the measurements, e.g. during October 2019 for Area 1 and
during December 2019 and January 2020 for Area 2.
14
Fig. A.16. The figure displays difficulties in validating the model by doing residuals
analysis on the one-step predictions in Area 1. The top plot shows the measured
temperature (black solid line) and the one-step prediction (blue points). The flow for
the same period is illustrated in the second top plot. In the bottom are three plots
that show the residuals analysis of the one-step prediction errors. The first plot on the
bottom shows the residuals over time, the next plot shows the residuals versus the
flow, and the last plot shows the autocorrelation function (ACF) of the residuals.

Fig. A.17. The figure displays difficulties in validating the model by doing residuals
analysis on the one-step predictions in Area 2. The top plot shows the measured
temperature (black solid line) and the one-step prediction (blue points). The flow for
the same period is illustrated in the second top plot. In the bottom are three plots
that show the residuals analysis of the one-step prediction errors. The first plot on the
bottom shows the residuals over time, the next plot shows the residuals versus the
flow, and the last plot shows the autocorrelation function (ACF) of the residuals.
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Table A.4
Parameters and their confidence interval for the winter and summer estimation for both areas. For Area 1, there is no CI as the hessian could not be computed for the summer
period.

Parameter Area1 Area2

Winter Summer Winter Summer
Estimate (CI) Estimate (CI) Estimate (CI) Estimate (CI)

C1 101.9 (95.56, 108.55) 23.18 (, ) 1 (1, 501) 63.31 (36.46, 105.9)
C2 1 (1, 501) 1 (, ) 14.92 (13.23, 16.83) 28.31 (19.14, 41.72)
C3 173.1 (165.92, 180.43) 34.48 (, ) 33.3 (33.16, 33.45) 38.28 (37.87, 38.69)
C4 (,) (,) 209.22 (201.04, 217.5) 44.98 (44.24, 45.73)
C5 245.16 (232.6, 257.76) 94.28 (, ) 13.69 (13.56, 13.83) 3 (1.01, 215.3)
C6 276.88 (256.16, 297.25) 501 (, ) 6.9 (6.37, 7.47) 260.84 (238.7, 282.82)
C7 1.91 (1, 482.67) 1 (, ) 26.77 (26.65, 26.89) 32.02 (31.8, 32.25)
C8 (,) (,) 21.09 (20.58, 21.6) 11.68 (6.21, 22.63)
C9 245.27 (234.49, 256.07) 92.26 (, ) 6.53 (6.12, 6.97) 16.62 (7.25, 38.95)
C10 188.13 (175.59, 201.01) 103.34 (, ) 424.55 (386.15, 451.75) 325.95 (316.36, 335.29)
C11 108.01 (103.37, 112.79) 61.95 (, ) 501 (1, 501) 374.99 (356.71, 391.66)
C12 215.99 (207.73, 224.32) 12.88 (, ) 501 (1, 501) 60.27 (58.5, 62.09)
C13 55.7 (47.37, 65.31) 13.16 (, ) 23.83 (22.2, 25.58) 10.44 (8.32, 13.17)
C14 84.73 (74.02, 96.66) 31.55 (, ) 24.55 (24.32, 24.79) 25.76 (23.5, 28.24)
C15 214.41 (210.22, 218.61) 151.78 (, ) 47.72 (47.37, 48.06) 13.17 (9.27, 18.85)
R1 325.13 (324.43, 325.82) 376.67 (, ) 802.19 (796.28, 808.1) 1501 (1, 1501)
R2 1144.12 (1101.73, 1183.31) 1501 (, ) 334.75 (334.42, 335.08) 505.99 (504.8, 507.19)
R3 316.06 (315.02, 317.1) 413.17 (, ) 248.26 (248.06, 248.47) 369.16 (367.44, 370.89)
R4 (,) (,) 187.79 (187.53, 188.05) 295.92 (295.72, 296.12)
R5 249.1 (248.48, 249.72) 383.63 (, ) 511.81 (511.11, 512.52) 662.55 (659.75, 665.35)
R6 149.37 (149.27, 149.46) 178.89 (, ) 214.6 (214.54, 214.66) 336.28 (335.31, 337.24)
R7 863.29 (858.63, 867.94) 1344.51 (, ) 242.79 (242.52, 243.05) 315.6 (315.07, 316.13)
R8 (,) (,) 255.48 (255.43, 255.54) 359.45 (358.9, 359.99)
R9 423.67 (420.63, 426.72) 702.91 (, ) 843.58 (840.51, 846.64) 1376.71 (982.53, 1478.17)
R10 790.97 (768.8, 813.06) 1314.43 (, ) 113.28 (113.12, 113.43) 121.07 (121.03, 121.12)
R11 962.96 (921.01, 1003.51) 911.85 (, ) 121.09 (120.94, 121.25) 126.53 (126.49, 126.58)
R12 243.45 (243.17, 243.73) 402.5 (, ) 97.4 (97.26, 97.53) 228.06 (227.93, 228.19)
R13 722.03 (711.75, 732.32) 917.09 (, ) 318.39 (318.29, 318.49) 438.79 (437.89, 439.69)
R14 856.07 (822.25, 889.46) 1292.8 (, ) 166.48 (166.43, 166.52) 236.79 (236.63, 236.96)
R15 313.96 (313.48, 314.44) 371.96 (, ) 162.23 (162.13, 162.33) 253.68 (253.45, 253.91)
𝜎1 1.005e−05 (1.000e−05, 2.000e+00) 2.908e−02 (, ) 2.456e−01 (2.363e−01, 2.553e−01) 1.014e−05 (1.000e−05, 2.000e+00)
𝜎2 1.123e−05 (1.000e−05, 2.000e+00) 1.000e−05 (, ) 2.406e−02 (1.911e−02, 3.027e−02) 1.202e−05 (1.000e−05, 2.000e+00)
𝜎3 1.001e−05 (1.000e−05, 2.000e+00) 4.019e−02 (, ) 8.904e−02 (8.872e−02, 8.937e−02) 1.083e−01 (1.076e−01, 1.090e−01)
𝜎4 (,) (,) 4.869e−02 (4.851e−02, 4.886e−02) 1.151e−05 (1.000e−05, 2.000e+00)
𝜎5 6.549e−03 (5.815e−03, 7.376e−03) 2.245e−02 (, ) 4.023e−02 (3.938e−02, 4.109e−02) 8.395e−05 (1.000e−05, 2.000e+00)
𝜎6 1.180e−05 (1.000e−05, 2.000e+00) 4.628e−02 (, ) 7.117e−02 (6.957e−02, 7.279e−02) 1.981e−02 (1.950e−02, 2.012e−02)
𝜎7 1.026e−05 (1.000e−05, 2.000e+00) 1.445e−05 (, ) 1.117e−01 (1.113e−01, 1.120e−01) 6.177e−02 (6.088e−02, 6.267e−02)
𝜎8 (,) (,) 1.001e−05 (1.000e−05, 2.000e+00) 1.232e−05 (1.000e−05, 2.000e+00)
𝜎9 1.002e−05 (1.000e−05, 2.000e+00) 1.013e−05 (, ) 1.006e−05 (1.000e−05, 2.000e+00) 1.158e−05 (1.000e−05, 2.000e+00)
𝜎10 1.006e−05 (1.000e−05, 2.000e+00) 1.014e−05 (, ) 4.317e−02 (4.309e−02, 4.325e−02) 1.545e−02 (1.539e−02, 1.551e−02)
𝜎11 1.002e−05 (1.000e−05, 2.000e+00) 1.010e−05 (, ) 3.288e−02 (3.283e−02, 3.294e−02) 1.149e−02 (1.139e−02, 1.159e−02)
𝜎12 1.002e−05 (1.000e−05, 2.000e+00) 2.857e−02 (, ) 4.341e−02 (4.336e−02, 4.345e−02) 1.170e−05 (1.000e−05, 2.000e+00)
𝜎13 1.001e−05 (1.000e−05, 2.000e+00) 1.025e−05 (, ) 1.000e−05 (1.000e−05, 2.000e+00) 1.409e−05 (1.000e−05, 2.000e+00)
𝜎14 1.004e−05 (1.000e−05, 2.000e+00) 1.050e−05 (, ) 6.046e−02 (5.997e−02, 6.096e−02) 1.149e−05 (1.000e−05, 2.000e+00)
𝜎15 1.000e−05 (1.000e−05, 2.000e+00) 1.690e−02 (, ) 9.479e−02 (9.456e−02, 9.501e−02) 1.208e−02 (1.759e−05, 1.813e+00)
𝜎16 0.01 (0.01, 0.01) 0.01 (, ) 1.542e−02 (1.540e−02, 1.544e−02) 1.479e−02 (1.471e−02, 1.487e−02)
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