
Electrical Power and Energy Systems 145 (2023) 108643

A
0
n

Contents lists available at ScienceDirect

International Journal of Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

A stochastic methodology to exploit maximum flexibility of swimming pool
heating systems
Mohsen Banaei a,∗, Francesco D’Ettorre a, Razgar Ebrahimy a, S. Ali Pourmousavi b,
Emma M.V. Blomgren a, Henrik Madsen a

a Technical University of Denmark, Department of Applied Mathematics and Computer Science, Copenhagen, Denmark
b The University of Adelaide, School of Electrical and Electronic Engineering, Adelaide, Australia

A R T I C L E I N F O

Keywords:
Flexibility
Heat pumps
Scheduling
Regulation market
Stochastic MILP

A B S T R A C T

Swimming pool heating systems are known as one of the best flexible resources in buildings. However, they
can be flexible only for a certain number of hours throughout a day due to the comfort constraints of the users.
In this study, a new approach is proposed to determine a group of contract hour sets to procure maximum
flexibility of swimming pool heating systems supplied by heat pumps for trading in the regulation market
while respecting the comfort of users. The main advantage of the contract hour sets is the certainty in response
to flexibility requests. The proposed approach consists of three main steps. First, a stochastic mixed-integer
linear program is proposed to find the optimal operation of a swimming pool heating system that has agreed to
provide flexibility in a contract hours set. Then, a metric is proposed to evaluate the effectiveness of contract
hour sets using the results obtained in the first step. Finally, an algorithm is proposed to identify a group of
the most efficient contract hour sets using the calculated metric. The proposed approach is validated through
comprehensive simulation studies for a summerhouse with an indoor pool heated by a heat pump. Also, a cost–
benefit analysis is performed to examine the feasibility of these contract hour sets from financial viewpoint.
Simulation results show that the maximum contract hours can vary from 2 to 12 h depending on the building
occupation pattern and the minimum payment to owners is between 0.03 to 0.06 (Euro/kW).
1. Introduction

According to the definition by International Energy Association
(IEA), ‘‘power system flexibility is its ability to reliably and cost-
effectively manage the variability and uncertainty of demand and
supply across all relevant timescales’’ [1]. Flexibility is crucial for reli-
able operation of power system during because generation and demand
must match momentarily. In the past, flexibility was achieved by supply
side of the power grid, i.e., synchronous generation such as thermal
power plants. However, increasing the penetration of renewable energy
sources, with their uncertain characteristics together with reducing the
share of thermal power plants in the supply side requires new sources
of flexibility in the power grids [2]. As a result, efforts have been made
to procure required energy flexibility from the demand side of power
systems [3]. Demand-side flexibility can be used in different ways
depending on the nature of the demand flexibility and the duration
over which it can sustain a change in load [4]. For instance, it can be
used for frequency regulating with an immediate impact on the system
operation, or in congestion management and voltage regulation at the
distribution electricity network to postpone the expansion plans [5].

∗ Corresponding author.
E-mail address: Moban@dtu.dk (M. Banaei).

While there is nothing to prohibit many residential appliances from pro-
viding flexibility, in reality, however, only a few of them are capable of
providing it in a reliable and effective way. Heat pumps (HPs) coupled
with either active or passive thermal energy storage are one of the most
promising sources of flexibility from end-users [6]. Thermal inertia of
buildings and thermal energy storage units together can help us to shift
the operation of HPs in time. Moreover, power consumption level of
HPs is typically high compared to other appliances, thus making them
capable of providing a greater amount of flexibility when available.

The growing interest in exploiting the flexibility of HPs can be
seen in the number of papers published on this topic in recent years.
Schibuola et al. [7] investigated different heuristic price-based control
strategies for an electric HP coupled with thermal energy storage and
PV panels to minimize energy costs and self-consumption of locally
produced electricity under a dynamic electricity tariff. Similarly, Ro-
driguez et al. in [8] analyzed the potential benefits of demand response
strategies for HPs incentivized by day-ahead pricing signals. Yuan
et al. [9] proposed a price-based method for controlling the water
and space temperature of a swimming hall using district heating. A
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Nomenclature

Indices

𝑓 Clusters
𝑖 System uncertainty scenario
𝑠𝑎 Flexibility request uncertainty scenario at

hour 𝑎
𝑡 Time intervals

Sets

𝐴, 𝐵 Subsets of CHSs, where 𝐶𝐻𝑆 = {𝐴,𝐵}
𝐴1, 𝐴2 Subsets of set 𝐴, where 𝐴 = {𝐴1, 𝐴2}
𝐵1, 𝐵2 Subsets of set 𝐵, where 𝐵 = {𝐵1, 𝐵2}
𝐹 Set of clusters
𝑁 Set of time intervals
𝑆 Set of system uncertainty scenarios

Parameters

𝛽𝑡 Weighting coefficient for prioritizing the
violation from comfort constraints

𝛥𝑡 The length of each time interval (h)
𝑚̇ Flow rate of water (kg/s)
𝜌𝑎𝑠𝑎 Probability of flexibility request uncertainty

scenario 𝑠 at hour 𝑎
𝜌𝑖 Probability of system uncertainty scenario 𝑖
𝐶 𝑖
𝑡 Electricity price (Euro/kWh)

𝑐𝑝 Specific heat capacity of water (kJ/kg K)
𝐻𝑜 Overall heat transfer coefficient (kW∕K)
𝐾0 CHSs’ evaluating metric
𝑀 Mass of water in the swimming pool (kg)
𝑚 Mass of water in the heat exchanger (kg)
𝑃𝑛 Nominal power of the HP (kW)
𝑄𝑡ℎ Thermal power of the heating system (kW)
𝑇 𝑖
𝑒𝑥𝑡,𝑡 Ambient temperature at hour 𝑡

𝑇 𝑚𝑎𝑥
𝑡 Maximum water temperature at hour 𝑡

𝑇 𝑚𝑖𝑛
𝑡 Minimum water temperature at hour 𝑡

𝑍 Number of contract hours in a CHS

Variables

𝑇 𝑖𝑛,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

Outgoing water temperature from the swim-
ming pool

𝑇 𝑜𝑢𝑡,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

Incoming water temperature to the swim-
ming pool

𝑢𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
Binary decision variable for SPHS operation

𝑣𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
Minimum necessary violation from max-
imum water temperature limit to avoid
infeasibility.

𝑤𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

Minimum necessary violation from min-
imum water temperature limit to avoid
infeasibility

rule-based algorithm is used to exploit peak shaving and load shifting
demand response programs, which led to 1.1% reduction in total energy
cost and 3% increase in the average water temperature. The influence
of electricity tariffs on energy flexibility in buildings and associated
energy costs was investigated by Fitzpatrick et al. [10]. The authors
showed that real-time pricing is the most favorable tariff structure,
capable of offering the greatest energy flexibility with lowest associated
2

electricity costs. Baeten et al. [11] studied the impact of a large-scale 9
deployment of actively controlled HPs and thermal energy storage
on the power grid using a multi-objective predictive control (MPC)
strategy. The optimal sizing strategy of domestic air-source HPs with
thermal storage considering different electrical load shifting strategies
in different dwellings was investigated by Marini et al. [12]. Their re-
sults showed that the amount of flexibility can change by consumption
pattern, thermal energy storage volume and the electricity tariff.

Unlike the previous works which are mainly based on simulations,
Müller et al. [13] presented the results from a large-scale trial of a
demand response scheme involving a population of more than 300 res-
idential buildings with HPs. Similarly, Sweetnam et al. [14] presented
results of a trial of a control system aimed at optimizing HP operation,
within a time-varying electricity tariffs framework. In [15], Pèan et al.
developed and experimentally tested different MPC strategies for space
heating in a semi-virtual environment laboratory setup. The aim of
the controller was to minimize either the delivered thermal energy to
the building, the operational costs of the HP, or the CO2 emissions
elated to HP operation. A rule-based control strategy for an air-source
P coupled with PV panels for heating applications was proposed by
ee et al. [16] in an Italian context with the purpose of enhancing
he level of self-consumption. Fischer et al. [17] analyzed different
perational strategies for capacity-controlled HPs connected to thermal
torage in German multifamily houses to maximize energy performance
nd utilization of on-site PV production, while minimizing energy costs.
eerbeck et al. [18] developed an optimal controller using model
redictive control and external parameters such as weather and CO2
mission forecasts, to minimize CO2 emissions of buildings equipped
ith a HP unit.

Rominger et al. [19] experimentally investigated a new system
rchitecture to provide frequency containment reserve through ag-
regation of heating, ventilation, and air conditioning systems. An
ndustrial site containing workshop and office buildings, where the
roposed architecture was installed and pre-qualified by the transmis-
ion system operators, was used as a case study. It has been shown
hat the system was capable of providing almost 300 kW of frequency
ontainment reserve. The technical and financial viability of the use
f HPs to participate in the frequency restoration reserve market was
nvestigated by Rodriguez et al. [20]. A simulation model was de-
eloped and validated using data from a household in a plus-energy
eighborhood in southern Germany. Kim et al. [21] analyzed the extent
o which a direct load control strategy can unlock the energy flexibility
otential of a commercial building equipped with a variable speed
P for frequency regulation. A coordinated control strategy of HP
ater heaters has been proposed by Mufaris et al. in [22] to minimize
oltage violation and reverse power flow due to local PV generation
n a residential distribution system in Japan. The results showed the
ffectiveness of the proposed coordinated control method in mitigating
oltage violations without compromising end-user comfort, namely no
hortage of domestic hot water during voltage control periods.

Our extensive literature review shows that we can categorize these
apers in two main groups, (1) studies that focused on exploiting the
mplicit flexibility of HPs, i.e., [7–18], and (2) research works that
eveloped algorithms to procure flexibility of HPs explicitly, i.e., [19–
2]. In implicit flexibility procurement, the flexibility is obtained by
ffering time-varying electricity prices to the end-users. In explicit
lexibility, however, end users’ flexibility is offered to energy markets
e.g. through an aggregator) and a payment is received in return for
he load variation offered and accepted in the market [23].

This paper proposes an approach to exploit the maximum explicit
lexibility of HPs for participation in the power regulation market. Our
ocus is on using HPs in swimming pool heating systems (SPHSs), which
s found to be an ideal flexibility resource in many studies [9,24,25]
ue to the high thermal storage capacity of the pools . Moreover, there
re companies that provide large number of rental properties equipped
ith pools heated by HPs. For instance, NOVASOL manages more than

00 summerhouses with indoor pools in Denmark alone [26]. Making
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contracts with these companies gives the aggregators an access to sig-
nificant flexibility of SPHSs that can be used to offer different services
to the power grid. The main idea of the paper originates from the fact
that it is not possible to utilize the flexibility of SPHSs throughout a
day without any uncertainty because of their operational limits. This,
in turn, increases the risk of bidding their flexibility capacity in the
regulation market because the anticipated flexibility may not realize
in real-time. To address this issue, we suggest tying the availability
of SPHSs for flexibility provision to specific hours of a day, which is
called a contract hour set (CHS). Each hour of a CHS is called a contract
hour. The aggregator and end-user negotiate and agree on the service
hours for the contract period. During each contract hour, the SPHSs are
ready to respond to the requests issued by the aggregator. For instance,
if the SPHS is supposed to provide downward reserve (more power
consumption), it must remain off during the contract hours. Then, if
the downward regulation reserve is needed in the power grids during
the contract hour, the SPHS will be turned on and stays on until the
end of the hour.

Since occurring power imbalance in the grid and its volume at each
hour of the day is hard to predict, there is an uncertainty in utilizing
the flexibility of SPHSs by the aggregator. This uncertainty must be
considered in the proposed method. Moreover, parameters like building
occupancy, electricity prices, weather condition, and initial state of
system variables affect the feasibility of the plan; hence, should be
included in the model.

The results of the proposed methodology provide a guideline for
both aggregators and end-users before agreeing on a flexibility contract.
This guideline gives a group of efficient CHSs in which a SPHS can pro-
vide maximum explicit flexibility for an aggregator without violating
the users’ comfort level above a certain threshold.

The main contributions of the paper are as follows:

1. Proposing a framework to procure the flexibility of SPHSs in spe-
cific hours of the day, without violating operational constraints
and with no uncertainty in response to the flexibility request.
The latter means the response to the flexibility request from
the aggregator will always be positive in specific hours of the
day; which guarantees a certain capacity for aggregator to bid
in ancillary service markets, e.g., regulation market.

2. Introducing a stochastic mixed integer linear programming
(SMILP) method for modeling the optimal operation of SPHSs
considering the uncertainties in weather, electricity prices, ini-
tial state of the system variables, and using the available flexi-
bility in each contract hour;

3. Proposing an analytical approach for obtaining a group of CHSs
among all possible combinations of contract hours that maxi-
mizes the available flexibility while respecting the operational
constraints of the system.

The rest of the paper is organized as follows. The problem definition
and assumptions are presented in Section 2. In Section 3, different
uncertainties in the system are introduced. The proposed approach for
finding the most efficient CHSs is presented in Section 4. Simulation
results are presented in Section 5. Finally, the paper is concluded in
Section 6.

2. Problem assumptions and definition

As mentioned before, this paper focuses on SPHSs in summerhouses.
These summerhouses are owned by a company and rented out on
a daily/weekly basis. The swimming pools are indoor. However, we
had only access to the swimming pool based on the agreement with
the rental agency. Therefore, the control strategy is applied only to
the SPHS. The main structure of the SPHS is presented in Fig. 1.
The energy management system (EMS) receives price, weather and a
summerhouse’s booking status from data providers and also ambient
and water temperature data from metering devices, and creates optimal
3

Fig. 1. A typical structure of a SPHS in a summerhouse.

control signals (ON or OFF status) for the operation of the SPHS in
the next time intervals. The HP is equipped with a controller that
determines ON/OFF status of the HP based on the deviation of water
temperature from a set-point. So, to apply the control signal provided
by the EMS to the HP, the temperature set-point will be adjusted
accordingly. For instance, if the HP should be OFF (ON) in the next
time interval, the temperature set-point is changed to a lower (higher)
temperature than the current pool water temperature. The EMS is ready
at all times to receive a flexibility request from an aggregator to provide
flexibility.

The best way to use the SPHSs’ flexibility effectively is to aggregate
a large number of them into a single flexibility source using a flexibility
contract through an aggregator. Then, the aggregator can bid this
flexibility in the regulation market. Since SPHSs’ capability to provide
flexibility is limited by operational constraints and the occupant com-
fort requirements, i.e., upper and lower limits of water temperature,
their flexibility cannot be sustained for a long time. As a result, it is
beneficial to end-users and aggregators to schedule flexibility of SPHSs
for certain hours of a day through a CHS. The duration of a flexibility
contract can be a day, week, month, season or year. Without loss of
generality, however, the problem is discussed for a one month contract
period in the rest of the paper.

Based on the flexibility contract, the SPHSs should be ready to
provide flexibility for the aggregator during a specific CHS. Two pa-
rameters should be specified in the contract: (1) the type of flexibility
i.e., upward or downward, that is supposed to be provided, and (2)
agreed efficient CHSs for each possible occupation pattern of the sum-
merhouse. During the operation period, before participating in the
regulation market, the aggregator should be informed about the occu-
pation of the summerhouses to choose the right CHS from the flexibility
contract and calculate the available flexibility accurately.

Different CHSs are agreed by both parties for each occupation
pattern because the water temperature limitations and consequently the
ability to provide flexibility at each occupation pattern is different. It is
assumed that the occupation status changes at 12:00 a.m. So, for each
day, four main booking patterns can be defined. Water temperature
limitations, and the ability to provide flexibility at each day depends
on the occupation pattern of that day and the days before and after
that. During the rented hours, water temperature limitations are more
than other hours. Moreover, if the house is not rented for a long time,
temperature limitations will be different from the case that it was un-
occupied for only one day between two rented days. When the house is
not rented for more than one day, temperature limitations are relieved
as much as possible to reduce the use of SPHS. As a result, no flexibility
services will be provided to the power grids until the beginning of the
next rented day. However, when the house is not rented for only one
day, there are still limitations on the water temperature to keep the
swimming pool ready for the next day and flexibility services can also
be provided for the grid. Considering the explanations above, possible
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Fig. 2. Possible occupation patterns, flexibility service availability, and related water temperature limitations for a typical summerhouse.
occupation patterns and flexibility provision ability for each pattern is
depicted in Fig. 2. No flexibility services are provided in occupation
pattern (𝑒) and the last 12 h of occupation pattern (𝑑). Therefore, the
flexibility contract will be executed only for occupation patterns (𝑎),
(𝑏), (𝑐), (𝑓 ), and the first 12 h of occupation pattern (𝑑).

It is useful for end-users as well as aggregators to have several
options for each booking pattern as suitable CHSs to choose from. In
this case, the aggregator can choose an optimal combination of CHSs
from different contracts to maximize its profit by optimally bidding in
the market. Therefore, the goal of the aggregator is to find a group of
CHSs for each summerhouse that gives the parties a flexibility in choos-
ing the suitable CHS. The main objective of this study is to propose a
framework to find the most efficient CHSs at each occupation pattern
for a SPHS. By an efficient CHS we mean a CHS with maximum number
of contract hours that satisfies the end-user comfort constraints above
a predefined threshold. This threshold represents the percentage of
expected hours in different scenarios during which comfort constraints
of users should be satisfied.

It should be noted that in addition to providing flexibility during
CHSs (explicit flexibility), the operation of SPHS during all 24 h of the
day should be cost efficient (implicit flexibility). Therefore, feasibility
of a CHS for the SPHS should be verified using an optimization problem
that aims to minimize the total operation cost considering the flexibility
contract. One of the main challenges regarding the flexibility contract
modeling is uncertainty in exploiting SPHS flexibility for regulation
power market. A comprehensive solution must take this uncertainty
into account by solving a stochastic problem. Since at each booking pat-
tern, one CHS is agreed for the whole contract period, the uncertainty
in the ambient temperature, electricity prices, and initial state of system
variables should also be included in the model for the scheduling
horizon when the contract is for more than one day.

In this study, we focused on the problem at the building level,
i.e., studying a single SPHS; thus we present an approach for finding
a group of efficient CHSs for occupation patterns (𝑎), (𝑏), (𝑐), (𝑓 ), and
the first 12 h of booking pattern (𝑑).

3. Introducing problem uncertainties

We categorized the different sources of uncertainties into two
groups, (1) system uncertainties and (2) flexibility request uncertain-
ties. Weather temperature, electricity price and a system’s initial state
are considered as the system uncertainties, while the uncertainties
related to receiving a flexibility request from the aggregator in the next
contract hours are called the flexibility request uncertainties.

3.1. System uncertainties

When the daily scheduling of the SPHS is performed, the electricity
prices and weather temperature for the next 24 h and initial water
4

temperature of the swimming pool are known. However, in the case of
multi-day contracts, these values are changing day by day. As a result,
uncertainty scenarios should be produced to represent the variations in
these parameters during the contract period.

Different methods such as using historic data or probabilistic fore-
casting approaches can be used to produce these scenarios [27,28]. In
this paper, it is suggested to use historical data of the same interval
of the contract period for creating electricity prices and weather tem-
perature scenarios. However, probabilistic forecasting approaches can
be used in real case implementations. Since the number of obtained
scenarios of historical data is high, the backward scenario reduction
method in [29] (briefly explained in Appendix) is used to reduce
the number of price and weather temperature scenarios to 𝑛𝑝 and 𝑛𝑤,
respectively. Each of these scenarios contains 24 electricity prices or
temperature data for 24 h of a day.

For initial water temperature uncertainty scenarios, if the historical
data of the input and output water temperatures of the swimming pool
are available, we can use it to produce these uncertainty scenarios.
Otherwise, we can simulate the system for several days under different
prices and ambient temperature to obtain water temperature values.
Then, the temperature values at hour 00:00 of each day can be used
for initial state scenario generation for the relevant booking pattern.
Similar to price and weather uncertainty scenarios, using the backward
scenario reduction method, the number of scenarios are reduced to 𝑛𝑙.

Merging the price, weather and initial state scenarios into one
set of system uncertainty scenarios is preferred in order to reduce
the complexity of the models in our paper. Each system uncertainty
scenario includes three sets of values for 24 h electricity prices, ambient
temperature, and two values for initial input and output water temper-
atures of a swimming pool. To produce system uncertainty scenarios,
all combinations of these three sets should be calculated, which equals
𝑛𝑠 = 𝑛𝑝 × 𝑛𝑤 × 𝑛𝑙 that are recorded in the 𝑆 set. The probability of each
system uncertainty scenario is calculated by multiplying the probability
of its related price, ambient temperature and initial state scenarios.

3.2. Flexibility request uncertainties

While the SPHS is ready to provide flexibility during contract hours,
there is an uncertainty about utilizing this flexibility by the aggregator
due to the uncertainty in the regulation power market. In this study, we
assume that the EMS in the summerhouse considers these uncertainties
and updates the operation schedule of the SPHS during the day based
on the aggregator’s actions, whether activating the flexibility or not. A
scenario tree is used to model these uncertainties, as shown in Fig. 3,
where it is assumed that the CHS is the set of hours {𝑢, 𝑣,𝑤}. If 𝑡 <
𝑢, there is no contract hour and consequently, no flexibility request
uncertainty in time intervals 𝑡 < 𝑢. Hence, there will be a unique
schedule for the SPHS, i.e., 𝑢𝑖𝑡,𝑢 in time intervals 𝑡 < 𝑢. For 𝑢 ⩽ 𝑡 < 𝑣,
the optimal value of the HP’s control variable depends on whether the
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Fig. 3. Scenario tree for modeling the uncertainty of requesting flexibility from the
aggregator.

flexibility in hour 𝑢 is used by the aggregator, i.e., 𝑠𝑢 = 1, or not,
i.e., 𝑠𝑢 = 2. Hence, the HP’s control variable in time interval 𝑢 ⩽ 𝑡 < 𝑣
can be represented by 𝑢𝑖,𝑢𝑣𝑡,𝑠𝑢

. Similarly, the control variables in time
intervals 𝑣 ⩽ 𝑡 < 𝑤 and 𝑤 ⩽ 𝑡 are expressed by 𝑢𝑖,𝑢𝑣𝑡,𝑠𝑢 ,𝑠𝑣

and 𝑢𝑖,𝑤𝑡,𝑠𝑢 ,𝑠𝑣 ,𝑠𝑤 ,
respectively.

4. The proposed approach for finding efficient CHSs

In this section, the process of finding a group of CHSs for a flexibility
contract is presented in three main steps as follows:

1. Step 1: An optimization problem is formulated to obtain optimal
scheduling of the SPHS considering the uncertainties in electric-
ity prices, ambient temperature, initial state of system variables,
and chance of flexibility being used by the aggregator.

2. Step 2: A new metric is formulated to evaluate the effectiveness
of each CHS in satisfying water temperature limitations using the
results of the first step.

3. Step 3: Finally, an algorithm is suggested to find the group of
most efficient CHSs using the recommended metric in the second
step.

These steps are explained in detail in the following subsections.

4.1. Step 1: Optimal SPHS’s operation formulation

In this section, the proposed formulation for determining the opti-
mal daily operation of the SPHS is presented considering the system
and flexibility request uncertainties. Therefore, a mathematical model
representing the dynamics of the water temperature is needed. Ac-
cording to Fig. 1 and the proposed method by Zemtsov et al. in [30],
these dynamics can be modeled by two differential equations. The first
equation represents the power balance in the heat exchange and is
formulated as below:

𝐶𝑖𝑛𝑇̇
𝑖𝑛,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

= 𝐻𝑤(𝑇
𝑜𝑢𝑡,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

− 𝑇 𝑖𝑛,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

) +𝑄𝑡ℎ𝑢
𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

∀𝑖 ∈ 𝑆, 𝑠𝑎 = 1, 2,… , 𝑠𝑧 = 1, 2 (1)

where 𝐶𝑖𝑛 = 𝑚 × 𝑐𝑝 and 𝐻𝑤 = 𝑚̇ × 𝑐𝑝 (see Fig. 1). The thermal power is
calculated as 𝑄𝑡ℎ = 𝐶𝑂𝑃 × 𝑃𝑛, where COP represents the coefficient of
performance and is assumed to be constant and 𝑃𝑛 is the rated power
of the HP. The second equation is the power balance in the pool and is
presented below:

𝐶 𝑇̇ 𝑜𝑢𝑡,𝑖 = 𝐻 (𝑇 𝑖𝑛,𝑖 − 𝑇 𝑜𝑢𝑡,𝑖 ) +𝐻 (𝑇 𝑒𝑥𝑡,𝑖 − 𝑇 𝑜𝑢𝑡,𝑖 )
5

𝑜𝑢𝑡 𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧 𝑤 𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧 𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧 𝑜 𝑡 𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
∀𝑖 ∈ 𝑆, 𝑠𝑎 = 1, 2,… , 𝑠𝑧 = 1, 2
(2)

where 𝐶𝑜𝑢𝑡 = 𝑀 × 𝑐𝑝 and 𝐻𝑜 represents the overall heat transfer
coefficient of the pool (see Fig. 1).

The optimization problem formulation is proposed for utilizing
downward flexibility in which the HP is OFF at the contract hours
and will be turned ON upon an aggregator’s request. Conversely, if
upward flexibility is needed, the HP must be ON at the contract hours
so that it can be turned OFF if the flexibility is requested. As far as
the formulation is concerned, there is only one difference between the
two flexibility formulations, which is the probability for activating flex-
ibility by the aggregator. Therefore, the formulation is only presented
for the downward flexibility procurement. The proposed formulation
avoids infeasibility by leading to the results with lowest violations
from water temperature limitations. Assuming the CHS is denoted by
{𝑎, 𝑏, 𝑐,… , 𝑧}, the following formulation must be solved:

min
𝑢𝑖

∑

𝑖∈𝑆
𝜌𝑖

2
∑

𝑠𝑎=1
𝜌𝑎𝑠𝑎

2
∑

𝑠𝑏=1
𝜌𝑏𝑠𝑏 × ... ×

2
∑

𝑠𝑧=1
𝜌𝑧𝑠𝑧 (

∑

𝑡∈𝑁
𝐶 𝑖
𝑡𝑢

𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

𝛥𝑡

+
∑

𝑡∈𝑁
𝛽𝑡(𝑣𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

+𝑤𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

)) (3)

s.t.: 𝑇 𝑜𝑢𝑡,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

≥ 𝑇 𝑚𝑖𝑛
𝑡 − 𝑣𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

∀𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁,

𝑠𝑎 = 1, 2,… , 𝑠𝑧 = 1, 2 (4)
𝑇 𝑜𝑢𝑡,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

≤ 𝑇 𝑚𝑎𝑥
𝑡 + 𝑣𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

∀𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁,

𝑠𝑎 = 1, 2,… , 𝑠𝑧 = 1, 2 (5)
𝑇 𝑖𝑛,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

≥ 𝑇 𝑚𝑖𝑛
𝑡 −𝑤𝑖

𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
∀𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁,

𝑠𝑎 = 1, 2,… , 𝑠𝑧 = 1, 2 (6)
𝑇 𝑖𝑛,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

≤ 𝑇 𝑚𝑎𝑥
𝑡 +𝑤𝑖

𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
∀𝑖 ∈ 𝑆, 𝑡 ∈ 𝑁,

𝑠𝑎 = 1, 2,… , 𝑠𝑧 = 1, 2 (7)

𝑢𝑖𝑎,𝑠𝑎 =

{

0 𝑠𝑎 = 1
1 𝑠𝑎 = 2,

𝑢𝑖𝑏,𝑠𝑎 ,𝑠𝑏 =

{

0 𝑠𝑏 = 1
1 𝑠𝑏 = 2, .

.., 𝑢𝑖𝑧,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

=

{

0 𝑠𝑧 = 1
1 𝑠𝑧 = 2,

(8)

𝐸𝑞𝑠. (1) 𝑎𝑛𝑑 (2)

The first term in the objective function (i.e., (3)) represents the total
cost of electricity consumption by the SPHS. 𝑢𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

is the SPHS’s
operation decision variable, which is a binary variable. According to
Fig. 3, we have:

𝑢𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑢𝑖,𝑎𝑡 𝑡 < 𝑎

𝑢𝑖,𝑎𝑏𝑡,𝑠𝑎
𝑎 ⩽ 𝑡 < 𝑏

𝑢𝑖,𝑏𝑐𝑡,𝑠𝑎 ,𝑠𝑏
𝑏 ⩽ 𝑡 < 𝑐

...

𝑢𝑖,𝑧𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
𝑧 ⩽ 𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(9)

Please note that the optimization is solved for each CHS individually
and the payment is made based on the capacity. Therefore, the revenue
from providing flexibility is a constant term; hence is not considered in
the objective function.

The second term in Eq. (3) refers to a penalty function that is
added to the objective function to avoid infeasibility in results. Slack
variables 𝑣𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

and 𝑤𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

in the penalty function represent
the minimum violation of the swimming pool water temperature con-
straints that is needed to avoid infeasibility in the scheduling program.
𝑣𝑖 and 𝑤𝑖 are also defined as below:
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧 𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
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𝑤

p
w
s

𝐓

𝐓

⋮

𝐓

N

𝐮

𝐓

w
c

𝐓

w

𝐓

𝐅

𝛹

𝛷

a

l
f

4

m
d
a

𝑣𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑣𝑖,𝑎𝑡 𝑡 < 𝑎

𝑣𝑖,𝑎𝑏𝑡,𝑠𝑎
𝑎 ⩽ 𝑡 < 𝑏

𝑣𝑖,𝑏𝑐𝑡,𝑠𝑎 ,𝑠𝑏
𝑏 ⩽ 𝑡 < 𝑐

...

𝑤𝑖,𝑧
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

𝑧 ⩽ 𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(10)

𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑤𝑖,𝑎
𝑡 𝑡 < 𝑎

𝑤𝑖,𝑎𝑏
𝑡,𝑠𝑎

𝑎 ⩽ 𝑡 < 𝑏

𝑤𝑖,𝑏𝑐
𝑡,𝑠𝑎 ,𝑠𝑏

𝑏 ⩽ 𝑡 < 𝑐

...

𝑤𝑖,𝑧
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

𝑧 ⩽ 𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(11)

𝛽𝑡 is a weighting coefficient that helps to prioritize violating comfort
constraints in different hours. For instance, greater values of 𝛽𝑡 means
that the summerhouse is rented during those hours. This way, the
temperature violations, if inevitable, occur during the summerhouse’s
vacant hours in an attempt to provide higher comfort for the occupants.

The constraints in Eqs. (4)–(7) represent the limits for input and out-
put water temperature of the swimming pool. When the optimization
problem is feasible, variables 𝑣𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

and 𝑤𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

are equal to
zero and upper and lower bounds of the water temperature are limited
to 𝑇 𝑚𝑎𝑥

𝑡 and 𝑇 𝑚𝑖𝑛
𝑡 , respectively. When a feasible solution cannot be

reached, these upper and lower bounds are changed by 𝑣𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
and

𝑤𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

to keep the optimization problem feasible while finding a
scheduling plan for the SPHS that leads to the lowest possible violation
in the water temperature limits.

Equality constraints in Eq. (8) represent the uncertainty scenarios of
flexibility request. This means that if the CHS include hour a, two sce-
narios can happen for the operation of HP in that hour, i.e., requesting
(ON) or not requesting (OFF) flexibility. Eqs. (1) and (2) describe the
dynamics of the system. In order to form a SMILP model, first, Eqs. (1)
and (2) should be discretized, as in Eq. (12):

⎛

⎜

⎜

⎜

⎝

𝑇 𝑖𝑛,𝑖
𝑡+1,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

𝑇 𝑜𝑢𝑡,𝑖
𝑡+1,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐓𝑡+1,𝑠𝑎,𝑠𝑏,…,𝑠𝑧

=

⎛

⎜

⎜

⎜

⎝

1 − 𝐻𝑤𝛥𝑡
𝐶𝑖𝑛

𝐻𝑤𝛥𝑡
𝐶𝑖𝑛

𝐻𝑤𝛥𝑡
𝐶𝑜𝑢𝑡

1 − 𝐻𝑤𝛥𝑡
𝐶𝑜𝑢𝑡

− 𝐻𝑜𝛥𝑡
𝐶𝑜𝑢𝑡

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀

⎛

⎜

⎜

⎜

⎝

𝑇 𝑖𝑛,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

𝑇 𝑜𝑢𝑡,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝐓𝑖
𝑡,𝑠𝑎,𝑠𝑏,…,𝑠𝑧

+

⎛

⎜

⎜

⎜

⎝

𝑄𝑛𝛥𝑡
𝐶𝑖𝑛

0

⎞

⎟

⎟

⎟

⎠

⏟⏟⏟
𝐁

𝑢𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

+

⎛

⎜

⎜

⎜

⎝

0

𝐻𝑜𝛥𝑡
𝐶𝑜𝑢𝑡

⎞

⎟

⎟

⎟

⎠

⏟⏟⏟
𝐄

𝑇 𝑒𝑥𝑡,𝑖
𝑡 (12)

Then, by denoting the initial water temperature of the swimming
ool in system uncertainty scenario 𝑖 as 𝐓𝑖

𝑡 = 𝐓𝑖
0 and using Eq. (12),

e can formulate the future states over the next 𝑁 time intervals, as
hown in Eqs. (13)–(15) [30]:
𝑖
𝑡+1,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

= 𝐀 ⋅ 𝐓𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

+ 𝐁 ⋅ 𝐮𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
+ 𝐄 ⋅ 𝐓𝑒𝑥𝑡,𝑖

𝑡 (13)

𝑖
𝑡+2,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

= 𝐀 ⋅ 𝐓𝑖
𝑡+1,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

+ 𝐁 ⋅ 𝐮𝑖𝑡+1,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
+ 𝐄 ⋅ 𝐓𝑒𝑥𝑡,𝑖

𝑡+1

= 𝐀⋅
[

𝐀 ⋅ 𝐓𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

+ 𝐁 ⋅ 𝐮𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
+ 𝐄 ⋅ 𝐓𝑒𝑥𝑡,𝑖

𝑡

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐓𝑖
𝑡+1

+𝐁⋅𝐮𝑖𝑡+1,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
+𝐄⋅𝐓𝑒𝑥𝑡,𝑖

𝑡+1

= 𝐀2 ⋅𝐓𝑖 +𝐀𝐁⋅𝐮𝑖 +𝐁⋅𝐮𝑖 +𝐀𝐄⋅𝐓𝑒𝑥𝑡,𝑖 +𝐄⋅𝐓𝑒𝑥𝑡,𝑖 (14)
6

𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧 𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧 𝑡+1 𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧 𝑡+1 s
𝑖
𝑡+𝑁,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

= 𝐀𝑁 ⋅ 𝐓𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

+
𝑁
∑

𝑗=1
𝐀𝑁−𝑗𝐁 ⋅ 𝐮𝑖𝑡+𝑗−1,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

+
𝑁
∑

𝑗=1
𝐀𝑁−𝑗𝐄 ⋅ 𝐓𝑒𝑥𝑡,𝑖

𝑡+𝑗−1 (15)

ow, by defining the following parameters,

𝑖
𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

=
[

𝑢𝑖1,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
𝑢𝑖2,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

… 𝑢𝑖𝑁,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

]𝑇
(16)

𝑒𝑥𝑡,𝑖 =
[

𝑇 𝑒𝑥𝑡,𝑖
1 𝑇 𝑒𝑥𝑡,𝑖

2 … 𝑇 𝑒𝑥𝑡,𝑖
𝑁

]𝑇 (17)

e can recast the above equations into the following linear equality
onstraints:
𝑖
𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

= 𝐅 ⋅ 𝐓𝑖
0 + 𝛹 ⋅ 𝐮𝑖𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

+𝛷 ⋅ 𝐓𝑒𝑥𝑡,𝑖 ∀𝑚 ∈ 𝑀, 𝑠𝑎 = 1, 2,

𝑠𝑏 = 1, 2,… , 𝑠𝑧 = 1, 2
(18)

here,

𝑖
𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[

𝑇 𝑖𝑛,𝑖
𝑡

𝑇 𝑜𝑢𝑡,𝑖
𝑡

]

𝑡 < 𝑎

[

𝑇 𝑖𝑛,𝑖
𝑡,𝑠𝑎

𝑇 𝑜𝑢𝑡,𝑖
𝑡,𝑠𝑎

]

𝑎 ⩽ 𝑡 < 𝑏

[

𝑇 𝑖𝑛,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏

𝑇 𝑜𝑢𝑡,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏

]

𝑏 ⩽ 𝑡 < 𝑐

⋮
[

𝑇 𝑖𝑛,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

𝑇 𝑜𝑢𝑡,𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

]

𝑧 ⩽ 𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(19)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐀
𝐀2

𝐀3

⋮
𝐀𝑁

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(20)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐁 𝟎 𝟎 … 𝟎
𝐀𝐁 𝐁 𝟎 … 𝟎
𝐀2𝐁 𝐀𝐁 𝐁 … 𝟎
⋮ ⋮ ⋮ ⋮

𝐀𝑁−1𝐁 𝐀𝑁−2𝐁 𝐀𝑁−3𝐁 … 𝐁

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(21)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐄 𝟎 𝟎 … 𝟎
𝐀𝐄 𝐄 𝟎 … 𝟎
𝐀2𝐄 𝐀𝐄 𝐄 … 𝟎
⋮ ⋮ ⋮ ⋮

𝐀𝑁−1𝐄 𝐀𝑁−2𝐄 𝐀𝑁−3𝐄 … 𝐄

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(22)

𝑇 𝑖
𝑒𝑥𝑡 is the weather temperature vector that includes hourly temper-

ture values of a day under uncertainty scenario 𝑖.
Now, replacing the system dynamic equations (1) and (2) by the

inear equation (18), the optimization problem in Eqs. (3)–(8) and (18)
orms a SMILP problem that can be solved by CPLEX solver in GAMS.

.2. Step 2: Introducing the evaluation index for CHSs

The effectiveness of each CHS as a successful contract plan is
easured using a metric, which is specified by 𝐾0. The metric is
efined as the percentage of the time intervals among all hours in
ll scenarios, i.e, 𝑁 × 𝑛𝑠, that the water temperature limitations are

𝑖 𝑖
atisfied. Since 𝑣𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
and 𝑤𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

represent the violations of the
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Fig. 4. Illustrative examples of CHSs in occupation class 𝐵𝐷 with set {𝐶 |𝐴1|,|𝐴2|
𝑋1,𝑋2 (ℎ)} and (b) occupation class 𝐴𝐶𝐹 with set {𝐶 |𝐴1|,|𝐴2|

𝑋1,𝑋2 (ℎ1), 𝐷|𝐵1|,|𝐵2|
𝑌 1,𝑌 2 (ℎ2)}.
water temperature limits in different hours and scenarios, we use these
variables to calculate the metric for each CHS as below:

𝐼1,𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
=

{

0 𝑣𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
> 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(23)

𝐼2,𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
=

{

0 𝑤𝑖
𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

> 0
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(24)

𝐾0 =
𝑛𝑠
∑

𝑚=1
𝜌𝑖

2
∑

𝑠𝑎=1
𝜌𝑎𝑠𝑎

2
∑

𝑠𝑏=1
𝜌𝑏𝑠𝑏 ×⋯×

2
∑

𝑠𝑧=1
𝜌𝑧𝑠𝑧

𝑁
∑

𝑡=1
(
𝐼1,𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧

+ 𝐼2,𝑖𝑡,𝑠𝑎 ,𝑠𝑏 ,…,𝑠𝑧
𝑁 × 𝑛𝑠

)×100

(25)

4.3. Step 3: Determining the group of most efficient CHSs

In this section, the proposed method for obtaining the group of
efficient CHSs is presented for occupation patterns (𝑎), (𝑏), (𝑐), (𝑓 ), and
the first 12 h of occupation pattern (𝑑) (as shown in Fig. 2). We can
classify these patterns into two main types: (1) patterns (𝑎), (𝑐), and
(𝑓 ) in Fig. 2, which include both rented and vacant statuses and are
called 𝐴𝐶𝐹 occupation class, and (2) booking pattern (𝑏) and the first
12 h of the booking pattern (𝑑) that include only rented status and are
called the 𝐵𝐷 occupation class. A generic approach is proposed to find
the group of most efficient CHSs for both occupation classes.

Trying all possible combinations, or using meta-heuristic optimiza-
tion algorithms that are based on iterative methods is not efficient
because the process of computing evaluation metrics for each CHS can
be time consuming. Therefore, an analytical method is proposed to find
the efficient CHSs in this study. Moreover, to reduce the computational
burden, a standard format is defined to describe CHSs mathematically.
Many formats can be defined for CHSs, however, our goal is to choose
the formats that are easy to understand for both aggregators and end-
users and efficient in covering a wide range of combination of hours as
much as possible.

We define the contract hours sequences as 𝐶 |𝐴1|,|𝐴2|
𝑋1,𝑋2 (ℎ), which in-

cludes two subsets 𝐴1 and 𝐴2. The symbol |.| shows a set cardinality.
The subset 𝐴2 has |𝐴2| contract hours and comes right after subset 𝐴1
that also consists of |𝐴1| contract hours. The number of hours between
each two contract hours in subset |𝐴1| (|𝐴2|) is 𝑋1 (𝑋2) hours. ℎ
represents the starting hour of the contract sequence. An illustrative
example of this contract hours sequences is depicted in Fig. 4a.

A block-diagram of the proposed method for finding efficient CHSs
is presented in Fig. 5 and explained below:

1. The first step is to determine the maximum number of contract
hours for efficient CHSs. To that end, we use the fact that
for the same number of contract hours, consecutive-hour CHSs
(CHCHSs) can give a lower bound to the effectiveness of all
combinations of CHSs with the same number of contract hours.
This is true because the ability of an EMS in CHCHSs for correct-
ing the deviations enforced by flexibility utilization is less than
other combinations. CHCHSs can be defined by sets {𝐶𝑍,0(ℎ)},
7

0,0
where 𝑍 is the number of contract hours. Since the efficiency
of a CHCHS increases by converting it into a non-CHCHS, we
suggest that the maximum number of contract hours at each
booking pattern, i.e., 𝑍̄, be equal to the minimum number of
contract hours in which for all combinations of CHCHSs (i.e., all
possible values of ℎ), 𝐾0 values are less than a predetermined
threshold. By turning 𝑍̄-hour CHCHSs into 𝑍̄-hour non-CHCHSs
(increasing their efficiencies) in the next steps, efficient CHSs
will be determined.

2. For each occupation pattern in the class 𝐵𝐷, all possible non-
CHCHSs in the form of {𝐶 |𝐴1|,|𝐴2|

𝑋1,𝑋2 (ℎ) |

|

|

𝑍̄ = |𝐴1| + |𝐴2|} are
created, the value of 𝐾0 index for each CHS is calculated using
Eq. (25), and the CHSs with 𝐾0 index greater than the threshold
are identified as efficient CHSs.

3. For 𝐴𝐶𝐹 class, since there are both rented and vacant statuses
in the occupation pattern, the standard CHS is defined as in set
{𝐶 |𝐴1|,|𝐴2|

𝑋1,𝑋2 (ℎ1), 𝐷|𝐵1|,|𝐵2|
𝑌 1,𝑌 2 (ℎ2)} |

|

|

𝑍̄ = |𝐴1|+|𝐴2|+|𝐵1|+|𝐵2|. Subset
𝐴 = 𝐶 |𝐴1|,|𝐴2|

𝑋1,𝑋2 (ℎ1) is used to describe the contract hours when
the house is vacant, while subset 𝐵 = 𝐷|𝐵1|,|𝐵2|

𝑌 1,𝑌 2 (ℎ2) describes
the contract hours when the house is rented. An example of
these CHSs is depicted in Fig. 4b. Efficient CHSs for occupation
patterns in class 𝐴𝐶𝐹 are obtained as follows:

• First, we find the most efficient subsets 𝐵 by trying all
their combinations while the rest of the contract hours
in subset 𝐴 are constant. Since our focus is on subset 𝐵
in this step, the contract hours in subset 𝐴 are defined
in such a way that the impact of uncertainty caused by
these contract hours on 𝐾0 metric is minimized. Since
temperature violations mainly occur during rental hours,
subsets 𝐴 are defined as CHCHSs in 𝐶 |𝐴1|,0

0,0 (ℎ1) format,
where ℎ1 = 1 for occupation patterns (𝑎) and (𝑓 ) and
ℎ1 = 25 − |𝐴1| for occupation pattern (𝑐). Choosing these
values for ℎ1 maximizes the timespan between contract
hours in subsets 𝐴 and rental hours; hence minimizes
their impacts on 𝐾0 values. So, all possible combinations
of CHSs in the forms of {𝐶 |𝐴1|,0

0,0 (1), 𝐷|𝐵1|,|𝐵2|
𝑌 1,𝑌 2 (ℎ2) |

|

|

𝑍̄ =
|𝐴1|+ |𝐵1|+ |𝐵2|} for occupation patterns (𝑎) and (𝑓 ) and
{𝐶 |𝐴1|,0

0,0 (25 − |𝐴1|), 𝐷|𝐵1|,|𝐵2|
𝑌 1,𝑌 2 (ℎ2) ||

|

𝑍̄ = |𝐴1| + |𝐵1| + |𝐵2|}
for occupation patterns (𝑐) are created and their related 𝐾0

indices are calculated.
• Subsets 𝐵 with 𝐾0 greater than the threshold are identified

and classified under 𝐹 clusters. In each cluster, (a) 𝐾0

values should be in the same range and (b) the number of
contract hours in the subset 𝐵 of CHSs should be the same.
Determining the number of clusters and the range of 𝐾0

values at each cluster depends on the occupation pattern
and the defined threshold, and is performed after obtaining
the efficient subsets 𝐵. The set of all subsets 𝐵 in cluster
𝑓 is called 𝐵𝑓

𝑆𝑒. The subset 𝐵 of the least-efficient CHS in
each cluster 𝑓 is defined as 𝐵𝑓 .
𝐿𝐸
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Fig. 5. Process of determining the group of efficient CHSs.
• Since 𝐵𝑓
𝐿𝐸 has the lowest efficiency among other subsets

𝐵 in cluster 𝑓 , if its union with a subset {𝐴 |

|

|

|𝐴| = |𝑍̄| −
|𝐵𝑓

𝐿𝐸 |} leads to an efficient CHS, the union of other subsets
𝐵 in cluster 𝑓 with this subset 𝐴 will also lead to efficient
CHSs. So, for each cluster 𝑓 , all combinations in the form
of {𝐶 |𝐴1|,|𝐴2|

𝑋1,𝑋2 (ℎ), 𝐵𝑓
𝐿𝐸} are investigated and their related 𝐾0

indices are calculated. Subsets 𝐴, whose union with 𝐵𝑓
𝐿𝐸

leads to efficient CHSs, are identified and recorded in a set
called 𝐴𝑓

𝑆𝑒.
• At each cluster, the union of each subset 𝐴 ∈ 𝐴𝑓

𝑆𝑒 and each
subset 𝐵 ∈ 𝐵𝑓

𝑆𝑒 gives an efficient CHS.

5. Numerical results

A summerhouse located in Denmark is chosen as the case study
in this paper. Without loss of generality, September is chosen as the
contract period. We define 𝑛𝑝 = 𝑛𝑤 = 𝑛𝑖 = 5. In order to create
price and weather uncertainty scenarios, day-ahead market prices and
weather data from September 2020 are collected and then reduced
to five scenarios as shown in Fig. 6. To create initial water tem-
perature scenarios, 1000 scenarios including different prices, weather
conditions, booking patterns, and initial states are generated for two
consecutive days. Then, the SPHS scheduling result for each scenario is
obtained using the proposed optimization problem in Section 4.1 after
eliminating the uncertainty of flexibility request in the formulation.
The values of input and output water temperature of the swimming
pool at hour 00:00 of the second day is used as the initial input and
output water temperature scenarios. These scenarios are reduced to
five main scenarios using the backward scenario reduction method,
as shown in Table 1. The probabilities of each price, weather and
initial water temperature scenario are reported in Table 2. Considering
different combinations of prices, weather and initial water temperature
scenarios, 125 system uncertainty scenarios, i.e., 𝑛 = 125, are obtained.
8

𝑠

Table 1
Uncertainty scenarios for initial water temperature of the swimming pool.

Scenario number 1 2 3 4 5

𝑇 0
𝑖𝑛 28.8 28 26.8 26.7 25.6

𝑇 0
𝑜𝑢𝑡 28.7 26.5 26.7 25.5 25.5

Table 2
Probability of each price, weather and initial water temperature scenario.

Scenario number 1 2 3 4 5

Price 0.20 0.23 0.14 0.13 0.30
Weather temperature 0.17 0.20 0.16 0.30 0.17
Initial water temperature 0.24 0.02 0.58 0.04 0.12

Table 3
SPHS parameters for the simulation study.
𝐶𝑜𝑢𝑡 𝐶𝑖𝑛 𝐻𝑜𝑛 𝐻𝑤 𝑄𝑛 𝛥𝑡
(kWh/◦C) (kWh/◦C) (◦C/kW) (◦C/kW) (kW) (h)

80 10 0.5 15 30 1

Lower and upper bounds of swimming pool water temperature
during rented hours are 27 ◦Cs and 29 ◦Cs, respectively, while they
change to 25 ◦Cs and 31 ◦Cs, respectively, during non-rented hours.
Probability of procuring flexibility by the aggregator is assumed to be
0.5, i.e., 𝜌𝑎𝑠𝑎 = 𝜌𝑏𝑠𝑏 = ⋯ = 𝜌𝑧𝑠𝑧 = 0.5. In this case, the formulation and
simulation results would be the same for both upward and downward
regulation. Parameter 𝛽𝑡 is equal to 2 × 103 and 103 during rented and
non-rented hours, respectively. Comfort level threshold is assumed to
be 98%, which means that maximum acceptable violation from the
water temperature limits is 2% of the all time intervals during the
contract periods. The SPHS parameters are defined in Table 3 [30].
The simulation results for occupation pattern (𝑎) of Fig. 2 are discussed
thoroughly. The results from other booking patterns are discussed
briefly to avoid duplication and extra pages.
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Fig. 6. System uncertainty scenarios (a) electricity prices, and (b) ambient temperature.
Fig. 7. Swimming pool water temperature variations in different flexibility scenarios and a specific system uncertainty scenario for the CHS (a) {5, 6, 7} and (b) {15, 16, 17}.
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.1. Investigating the impacts of different CHSs on the swimming pool water
emperature variations

To illustrate how choosing a CHS with specific contract hours can
ffect the feasibility of SPHS’s operation, the simulation results of
wimming pool water temperature variations for two cases are com-
ared in Fig. 7. In the first case, the CHS is chosen as {5, 6, 7}, where
o violation of the water temperature limits has occurred, as shown
n Fig. 7(a). However, in the second case where CHS is {15, 16, 17},
ater temperature limitations are violated in some hours and flexibility

equest scenarios, as depicted in Fig. 7(b). Therefore, CHS of {5, 6, 7} is
ore efficient than CHS of {15, 16, 17} in this particular case.

.2. Obtaining the group of efficient CHSs for occupation pattern (a)

In this subsection, the proposed algorithm from Section 4.3 and
ig. 5 is used to find the group of most efficient CHSs for occupation
attern (𝑎) in Fig. 2.

.2.1. Determining maximum number of contract hours
The first step is to find the maximum number of contract hours. To

his end, values of evaluating index 𝐾0 for all combinations of CHCHSs
ith 1 to 7 contract hours are calculated and presented in Fig. 8. Each
oint (ℎ, 𝑘) on each curve in Fig. 8 represents a CHCHS whose first
ontract hour is ℎ, and whose related index value is 𝑘. According to
9

ig. 8, we can conclude that:
• CHCHSs with equal or less than three contract hours satisfy the
comfort level threshold.

• For CHCHSs with equal or less than four contract hours during
non-rented times, violations of water temperature limitations are
almost zero.

• All combinations of CHCHSs with 𝑍 ≥ 7 do not satisfy the
required threshold. According to the explanations in Section 4.3,
a maximum of 7-hour contract duration is selected for efficient
CHS, i.e., 𝑍̄ = 7.

.2.2. Obtaining efficient subsets 𝐵
In this step, each 7-hour CHS is divided into two subsets 𝐴 and 𝐵.

According to Section 4.3, contract hours in subset 𝐴 should start from
hour 1 and continue for several hours, i.e., 𝐴 = {𝐶 |𝐴|,0

0,0 (1) ||
|

|𝐴| ≤ 𝑍̄}.
Subset 𝐵 represents the contract hours of the CHS when a house is
rented, i.e., 𝑘 > 12, which is defined in the standard format of 𝐵 =
{𝐶 |𝐵1|,|𝐵2|

𝑌 1,𝑌 2 (ℎ2)}, where 𝑍̄−|𝐴| = |𝐵1|+|𝐵2| = |𝐵|, and ℎ2 ≥ 13. Choosing
he above-mentioned format for subset 𝐴 minimizes the impact of the
ncertainty caused by this subset on calculation of 𝐾0; hence, the value
f 𝐾0 mostly depends on the structure of subset 𝐵. By trying all possible
ombinations of subsets 𝐵, i.e., all possible values of |𝐵1|, |𝐵2|, 𝑌 1,
2 and ℎ2, and calculating 𝐾0 index values, we can identify efficient

ubsets 𝐵 that give efficient CHSs.
The simulation results show that:

• All subsets 𝐵 with |𝐵| ≤ 1 or |𝐵| ≥ 4 do not lead to efficient

subsets.
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Fig. 8. Values of evaluation index 𝐾0 for 1 to 7 consecutive hour CHSs in occupation
pattern (𝑎).

Fig. 9. Illustrative representation of efficient subset 𝐵.

• All subsets 𝐵 with 𝑌 1 ≤ 1 or 𝑌 2 ≤ 1 are inefficient.
• There are a few subsets with |𝐵| = 2, 3 and 𝑌 1 ≥ 2 and 𝑌 2 ≥ 2 that

give efficient CHSs, as shown in Fig. 9. In general, when |𝐵| = 2,
subsets are efficient for ℎ2 ≥ 19, while subsets are efficient for
ℎ2 ≥ 15 when |𝐵| = 3.

• As shown in Fig. 9, efficient subsets cover almost all the rented
period except for hour 13. Therefore, the aggregator can provide
flexibility at all hours by choosing different subsets 𝐵 of CHSs for
different contracted summerhouses.

5.2.3. Clustering efficient subsets 𝐵 and determining 𝐵𝑓
𝐿𝐸 for each cluster

The next step in the algorithm proposed in Section 4.3 is clustering
the efficient subsets 𝐵. As mentioned in Section 4.3, at each cluster,
𝐾0 values should be in the same range, and the number of contract
hours in the subset 𝐵 should be the same. According to the results of
Section 5.2.2, four clusters are defined, as shown in Fig. 10. At each
cluster 𝑓 ∈ 𝐹 , all obtained efficient subsets 𝐵 are recorded in 𝐵𝑓

𝑆𝑒.
The next step is to determine the least-efficient subset 𝐵 at each

cluster 𝑓 , i.e., 𝐵𝑓
𝐿𝐸 . These are the subsets with lowest 𝐾0 index value

of subset 𝐵 in each cluster, which are presented in Table 4.

5.2.4. Obtaining efficient subsets 𝐴 for 𝐵𝑓
𝐿𝐸 in each cluster

Efficient subsets 𝐴 in each cluster are the subsets whose union with
subsets 𝐵 at the same cluster leads to efficient CHSs. To find these
efficient subsets 𝐴 in each cluster, all combinations of CHSs in {𝐴,𝐵𝑓 }
10

𝐿𝐸
Fig. 10. Illustrative representation of efficient subsets 𝐵 and the resultant clusters.

Table 4
Least-efficient subsets 𝐵 in each cluster.

Cluster (𝑓 ) 1 2 3 4

𝐵𝑓
𝐿𝐸 𝐷2,0

2,0(19) 𝐷2,0
3,0(19) 𝐷1,2

5,3(14) 𝐷1,2
4,2(15)

format, where 𝐴 = {𝐶 |𝐴1|,|𝐴2|
𝑋1,𝑋2 (ℎ1) ||

|

𝑍−|𝐵𝑓
𝐿𝐸 | = |𝐴1|+|𝐴2|, 1 ≤ ℎ1 ≤ 12}

are examined. The subsets 𝐴 leading to 𝐾0 greater than the threshold
are chosen as efficient subsets 𝐴 and recorded in the set 𝐴𝑓

𝑆𝑒. Simulation
results show that in each cluster, there can be many efficient subsets 𝐴.
To avoid complexity in presentation and provide an easy guideline for
finding efficient subsets 𝐴, we suggest using an index to identify them
in an easier way. The average of contract hours numbers (ACHN) at
each subset 𝐴 is used as an index to identify these subsets. In this case,
a maximum ACHN can be defined for each cluster 𝑓 that all subsets
𝐴 with ACHNs smaller than this maximum value be efficient. The
distribution of ACHNs of all combinations of subsets 𝐴 at all clusters
is presented in Fig. 11. Reviewing the simulation results shows the
overlapping area of efficient and inefficient CHSs is large, highlighted
in Fig. 11a on the left, which makes it difficult to distinguish between
the ACHN intervals of efficient and inefficient subsets. To overcome
this issue, subsets 𝐴 in the overlapping area were studied, where we
noticed that most of subsets 𝐴 are the ones that include hour 12 as
the contract hour. So, the simulations are repeated after removing
these subsets 𝐴. In the new simulation results, it can be seen that the
overlapping area decreases significantly, highlighted in Fig. 11a on the
right. Now, we define the maximum acceptable value for ACHN of
efficient subsets 𝐴 at each cluster 𝑓 , i.e., 𝐴𝐶𝐻𝑁𝑚𝑎𝑥

𝑓 , as the average
ACHN of efficient and inefficient subsets 𝐴 in the overlapping area.
Using this definition, 𝐴𝐶𝐻𝑁𝑚𝑎𝑥

𝑓 in clusters 1, 2, 3, and 4 are equal
to 5.9, 7.53, 5.25, and 6.96, respectively. Then, we can define sets
𝐴𝑓
𝑆𝑒 = {𝐴 ∣ 𝐴𝐶𝐻𝑁(𝐴) ≤ 𝐴𝐶𝐻𝑁𝑚𝑎𝑥

𝑓 𝑎𝑛𝑑 12 ∉ {𝐴}}. Although some
inefficient ACHNs might be identified as efficient ACHNs in this case,
they are rare and their efficiencies are very close to predetermined
threshold. It should be noted that while most subsets 𝐴 with contract
hour 12 are inefficient, there are a few efficient subsets 𝐴 in cluster 2
with contract hour 12 in the form of 𝐶3,2

0,{5,6,7}(12), 𝐶
3,2
1,4 (12) and 𝐶2,3

0,2 (12).
Finally, efficient CHSs are obtained as {{𝐴,𝐵} ∣ 𝐴 ∈ 𝐴𝑓

𝑆𝑒, 𝐵 ∈
𝐵𝑓
𝑆𝑒, ∀𝑓 ∈ 𝐹 }.

Based on the simulation results in Sections 5.2.1–5.2.4, it can be
said that efficient CHSs for occupation pattern (𝑎) of the summerhouse
should have the following properties:

• The maximum number of contract hours for achieving the comfort
level threshold 98% is 7 h.

• The contract hours during rented hours are recommended in
{𝐷2,0

𝑌 1,0(ℎ2)
|

|

|

𝑌 1 ≥ 2, ℎ2 ≥ 19} or {𝐷1,2
𝑌 1,𝑌 2(ℎ2)

|

|

|

𝑌 1 ≥ 3, 𝑌 2 ≥
2, ℎ2 ≥ 15} format.
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Fig. 11. Distribution of ACHNs with and without CHSs with flexibility commitment at hour 12 in clusters (a) 1, (b) 2, (c) 3, and (d) 4.
• Most recommended subsets 𝐴 of efficient CHSs are the ones that
do not include hour 12 as a contract hour and their ACHN value
are less than 𝐴𝐶𝐻𝑁𝑚𝑎𝑥

𝑓 ∀𝑓 ∈ 𝐹 given in Fig. 11.

.3. Evaluating the proposed method for choosing the maximum number of
ontract hours

In Section 4.3, a method was suggested to find the maximum num-
er of contract hours. In this section, the effectiveness of this method is
valuated. To this end, the proposed approach is repeated for the case
hat the number of contract hours is eight. Fig. 12 illustrates some of
he most efficient 8-hour CHSs. It can be seen that none of the 8-hour
HSs can reach efficiencies greater than 97%. If we want to use these
ypes of CHS, we have to accept the risk of a higher rate of violation
f the water temperature limits.

.4. Obtaining the maximum number of contract hours for other occupation
atterns

The same approach, as discussed in Section 5.2 for occupation
attern (𝑎), can be employed to find the group of efficient CHSs in
ther occupation patterns. Here, we only present the results of the
aximum number of contract hours. Following the method proposed

n Section 4.3, the maximum number of contract hours, i.e., 𝑍̄, for each
occupation pattern is reported in Table 5.

As shown in Table 5, in occupation patterns (𝑏) and (𝑑), the opportu-
nity to provide flexibility decreases because the summerhouse is rented
during the flexibility service provision hours and water temperature
constraints are tight. As a result, the maximum number of contract
hours would be 3 and 2 h, respectively. The difference between occu-
pation patterns (𝑎) and (𝑓 ) is in the water temperature limitations when
the house is vacant. Although the temperature limitations are relaxed
in occupation pattern (𝑓 ), the maximum number of contract hours is
fewer than the ones in occupation pattern (𝑎). This happens because in
11
Fig. 12. Most efficient 8-hour CHSs.

occupation pattern (𝑓 ), the SPHS is OFF in previous days, hence the
initial water temperature is lower than other patterns. Therefore, the
SPHS should be ON for a longer period of time to reach the desired
temperature at 12 a.m., which leads to less flexibility in the SPHS
operation. Occupation pattern (𝑐) gives the highest number for contract
hours among all occupation patterns. This is due to the fact that the
house is not rented for 24 h after hour 12 a.m., which gives the highest
flexibility in operation in the last 12 h of the day.

5.5. Cost–benefit analysis of flexibility contracts

The main driver for end-users to become involved in flexibility
contracts is financial. However, involving in other power grids services
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Table 5
Maximum number of contract hours for different occupation patterns.

Occupation class 𝐴𝐶𝐹 Occupation class 𝐵𝐷

𝑎 𝑐 𝑓 𝑏 𝑑

𝑍̄ 7 13 4 3 2

Fig. 13. Expected cost of providing flexibility service in each contract hour for all
occupation patterns.

deviates the operation of SPHS from its optimal operation point and
increases the costs. In this section, the additional cost of providing flex-
ibility services is investigated. To estimate the cost, 10 efficient CHSs
with the maximum number of contract hours, as shown in Table 5, are
generated for each occupation pattern. Then, average optimal operation
cost of each occupation pattern is calculated and subtracted from the
baseline operation cost, i.e., when there is no flexibility contract. The
results are divided by the number of contract hours to obtain the cost
incurred to the summerhouse per each contract hour in each booking
pattern. Simulation results are presented in Fig. 13. It can be seen that
the cost per kW of flexibility service in each pattern is different, which
is due to differences in the maximum number of contract hours in each
pattern and the hours of the day i.e., on-peak, mid-peak or off-peak,
in which flexibility is requested. For instance, in occupation patterns
(𝑎) and (𝑓 ), most of the contract hours occur during off-peak and mid-
peak hours, which leads to decrease in their costs in case of utilizing
their flexibility by the aggregator. However, most contract hours in
occupation pattern (𝑐) are selected during the mid-peak and on-peak
ours, which increase the operation cost of the SPHS compared to other
ases. This cost should be the minimum payment to the summerhouse
wner to encourage them to provide flexibility services.

. Conclusion

This paper proposes a methodology to procure maximum explicit
lexibility of a swimming pool heating system without uncertainty in
esponse to the flexibility request. To this end, a group of contract
our sets is obtained in which the heating system is ready to provide
lexibility to an aggregator. The aggregator and end-user can agree
n one specific contract hour set among all sets to provide flexibility
uring a contract period. In order to find these contract hour sets, first,
SMILP formulation is proposed to find the optimal daily scheduling of

he swimming pool heating system considering operational constraints,
ncertainty in price, weather and initial state of the system during the
ontract period, and uncertainty in utilizing the flexibility for a specific
ontract hour set. Then, an evaluation metric is formulated to measure
he efficiency of a set in satisfying users’ comfort constraints using the
esults of the first step. Finally, an algorithm is proposed to find the
roup of efficient contract hour sets with the maximum number of
ontract hours using the proposed evaluation metric in the second step.

The proposed method was applied to a summerhouse equipped with
indoor swimming pool heating system. Among all possible booking
12
patterns, five booking patterns in which the heat pump can provide
flexibility was chosen and maximum number of contract hours for
each occupation pattern was found, which can vary from 2 to 13 h
depending on the occupation patterns’ structure and the realistic range
of initial values for water temperature in each pattern. Moreover, a
simple guideline for finding these contract hour sets was suggested.
The guideline helps the aggregator and end-user to generate a wide
range of contract hour sets conveniently, as it gives more options to
choose from. The accuracy of the proposed approach in determining the
maximum number of contract hours was also evaluated. Finally, a cost–
benefit analysis was performed to investigate the minimum expected
payment to end-users for covering the additional costs incurred to the
summerhouse owner by proving flexibility services. Future directions
for this work could be applying the method to other flexible devices or
mix of devices in the buildings and including more complicated thermal
loads in the model.
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Appendix. A brief review on backward scenario reduction method

We used the proposed backward scenario reduction method in [29]
to decrease the system uncertainty scenarios. Here we apply the ap-
proach to price uncertainty scenarios. However, it can be easily adapted
to the ambient temperature and initial state scenarios too.

Let define 𝐶𝑗 = {𝐶𝑗
1 , 𝐶

𝑗
2 ,… , 𝐶𝑗

𝑁} as daily price scenario 𝑗 ∈ 𝐽 with
probability of 𝜌𝑝𝑗 , where 𝐽 is the set of all scenarios. The distance of
each two scenarios 𝐶𝑗 and 𝐶 𝑙 is defined as below:

𝑇 (𝐶𝑗 , 𝐶 𝑙) = 1
𝑁

√

√

√

√

𝑁
∑

𝑘=1
(𝐶𝑗

𝑘 − 𝐶 𝑙
𝑘)

2 (A.1)

The process of reducing the price scenarios to 𝑛𝑝 scenarios is ex-
lained as follows:

• Step 1: Compute the distance of all scenario pairs, i.e, 𝐷𝑇 (𝐶𝑗 , 𝐶 𝑙)
∀𝑗, 𝑙 ∈ 𝐽 .

• Step 2: For each scenario 𝑗, the scenario 𝑙∗𝑗 which has the mini-
mum distance with 𝑗, is identified.

• Step 3: Compute 𝑃𝐷𝑗 = 𝜌𝑝𝑗 ×𝐷𝑇 (𝐶𝑗 , 𝐶 𝑙∗𝑗 ) ∀𝑗 ∈ 𝐽 .
• Step 4: Find scenario 𝑑 such that 𝑃𝐷𝑑 = 𝑚𝑖𝑛{𝑃𝐷𝑗 ∀𝑗 ∈ 𝐽}.
• Step 5: 𝐽 = 𝐽 − {𝑏}, 𝜌𝑝𝑙∗𝑏

= 𝜌𝑝𝑙∗𝑏
+ 𝜌𝑝𝑏.

• Step 6: if |𝐽 | > 𝑛𝑝 (|𝐽 | refers to cardinality of the set 𝐽 ), return

to step 2, otherwise, stop the process.
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