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Abstract. Several studies have indicated that Model Predictive Control (MPC) of space heating systems 
can utilize the thermal mass of residential buildings as short-term thermal storage for various demand 
response purposes. Realization of this potential relies heavily on the accuracy of the model used to represent 
the thermodynamics of the building. Such models, whether they are grey box or black box, are calibrated 
using relevant data obtained from initial measurements, and the performance of the calibrated model is 
validated using data from a subsequent period. However, many studies use validation periods with weather 
conditions similar to those of the calibration period. Only a few studies investigate whether the calibrated 
model performs satisfactory when subjected to significantly different conditions. This paper presents data 
from a simulation-based study on the effect of seasonal weather changes on the performance of a black-box 
model. The study was conducted using 11 years of Danish weather data (2008-2018). The results indicate 
that the performance of the black-box model deteriorate as the weather data conditions become increasingly 
different from those used in the initial model calibration. Further, the results show that calibration in heating 
season leads to satisfactory model performance through the heating season, but lower performance in 
transitional seasons (especially spring). Results also show that calibration in February led to highest model 
performance through heating season, while calibration in March led to satisfactory model performance in 
the whole heating and fall season.

1 Introduction  

Previous studies investigated the potential of using black-
box models of the thermodynamic of buildings for Model 
Predictive Control (MPC) of space heating, see e.g. [1-
3], to mention a few. Here, the purpose of the MPC was 
to utilise the thermal mass of buildings as thermal storage 
to change the temporal heating patterns e.g. to even out 
the heating demand profile of district heating systems. 
The performance of the MPC for this purpose relies on 
the accuracy of the model-based predictions. Previous 
simulation-based studies have used a calibration and 
validation period with similar weather and model 
conditions to evaluate the accuracy of a model, see e.g. 
[1-5]. In reality, these conditions will change over time, 
both in relation to physical changes of the building and 
seasonal changes in weather conditions. Only a few 
studies evaluates how changes in weather conditions 
affect model performance. One study changed weather 
conditions by changing the location of the EnergyPlus 
model representing the ‘real’ building [6]. The study 
concluded that even when changing the weather 
conditions, the black-box model was satisfyingly close to 
the ‘measured’ values from the EnergyPlus model. 
Another study simulated a whole year and counted the 
number of necessary recalibrations on a black-box model 
[4]. This study found that only few recalibrations were 
necessary compared to the number of evaluated days, 
although the number of recalibrations was higher for a 
2nd-order model than for a 4th or higher order model. In 
ref. [7], the calibration of a grey-box model was based on 
five different situations, and a cross-validation was made 

for each situation with the four remaining ones. The 
results showed that a model calibrated with summer 
conditions performed satisfactory in winter conditions. 
However, the weather data was from Florida, where the 
difference in weather conditions for a summer and winter 
situation is lower than in northern Europe, for example. 
Another study evaluated the influence of the choice of 
calibration period by choosing various calibration 
periods, (winter, mid-season and summer) in Nantes, 
France, and compared the performance of a grey-box 
model from these periods with the performance in 
various validation periods [8]. Here, it was concluded 
that the model performed best within the same season as 
the calibration period.  

The above-mentioned studies show quite different 
results, and not all results are representative for a 
northern European climate. The purpose of this paper is 
therefore to extend current literature with an evaluation 
of the robustness of a black-box model in relation to 
seasonal weather changes in a northern European 
(temperate) climate. This analysis focuses on the weather 
conditions that have the largest impact on energy 
consumption in buildings, namely the external air 
temperature and solar radiation. The objective of the 
analysis is to identify whether recalibration of the black-
box model is necessary due to changing seasons, and if 
so, to identify which period of the year that is most suited 
for calibration of a model suitable for MPC of space 
heating systems. 
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2 Method  

This section describes the method used to evaluate the 
performance of a black-box model for MPC of space 
heating systems. A detailed EnergyPlus [9] model was 
used as an analogue for a real building, while the control 
of the heating system was implemented in MATLAB. 
Co-simulation between EnergyPlus and MATLAB was 
facilitated by the building controls virtual test bed 
(BCVTB) [10].  

 First, a pseudo-random binary sequence (PRBS) 
signal was generated and used to control temperature set 
point for a full-year simulation of the EnergyPlus case 
building. A full-length PRBS signal was used to ensure 
white noise properties [11]. The simulation was repeated 
with historical weather data for 11 consecutive years 
(2008-2018). A black-box model was then calibrated 
each month using data from the first 15.9 days of the 
month because this equals two full-length PRBS signals 
of order 7 and 8, respectively. Models calibrated using a 
PRBS signal will in the following sections be referred to 
as PRBS-models. The calibrated models were validated 
by comparing their simulation output for the last 10.6 
days every month, which corresponds to the full-length 
8th-order PRBS signal, with the EnergyPlus simulation 
output from the same period.  

In practice, an excitation with a PRBS signal can lead 
to discomfort for the user, as the temperature will 
fluctuate randomly during the day (Fig. 3). Therefore, the 
experiment was repeated using a rule-based on/off signal 
that does not fluctuate as much as the PRBS signal.  

This rule-based on/off signal reflects the typical 
behaviour of an MPC, inspired by [12]. As opposed to 
the PRBS signal, the MPC similar signal only boosts the 
heating system for a couple of hours during the night, as 
illustrated in Fig. 4. Models calibrated using this night 
boosting signal will in the following sections be referred 
to as NB-models. The purpose of testing this alternative 
signal was to evaluate whether it can substitute the use of 
the more intrusive PRBS signal. The PRBS signal is 
considered a more thorough test of the capabilities of the 
calibrated models, therefore NB-models was validated 
with the night boosting signal, as well as a PRBS signal. 

2.1 Case building  

The case building is an actual 81 m2 single-family 
residential building, which comply with the regulations 
of the Danish Building Standard [13]. The entire house 
was modelled as a single zone with no internal walls. The 

building has three environmentally exposed facades, 
illustrated in Fig. 1, and one adiabatic façade facing a 
building equal to the one simulated. The properties of the 
constructions were provided by the building owner, and 
are given in Table 1.  

 
South 
Façade 
 
 
 
North 
Façade 
 
 
 
 
 
West 
Façade 

Fig. 1. Geometry of the three facades facing outside. 

Furthermore, for the sake of simplicity, all windows were 
modelled with the EnergyPlus class 
SimpleGlazingSystem with a U-value of 0.74 W/m2K 
and solar heat gain coefficient of 0.5. On the northern 
façade, in Fig. 1, the window on the left is a non-
transparent door with U-value of 0.67 W/m2K. The 
building is naturally ventilated with a ventilation rate of 
0.3 l/s per m2 and infiltration rate of 0.0024 l/s per m2, 
both modelled with the EnergyPlus BLAST algorithm for 
infiltration [14]. 

 Weather data for a location in the city of 
Skanderborg (longitude: 10.0, latitude: 56.05) for the 11 
simulated years (2008-2018) were obtained from ref. [15] 
– a service that provides EnergyPlus weather files for 
custom locations throughout Denmark.  

 Fig. 2 illustrates how the output from the EnergyPlus 
example simulation behaves as expected. For simplicity, 
the example uses a constant temperature set point at 22 
°C. From the example, it is seen that the heating system 
is tuned off when the sun exposure is high. The indoor 
temperature is in general kept around the desired 22 °C, 
except for two peaks caused by the solar heat gain. The 
natural ventilation system follows the wind speed and the 
temperature difference between indoor and outdoor as 
expected due to the BLAST algorithm.  
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Table 1. Construction thermal properties. 

 
Material 

Thickness 
[m] 

Conductivity 
[W/(mK)] 

Density 
[kg/m3] 

Specific heat 
[J/(kgK)] 

Resistance 
[m2K/W] 

External wall (South) 

Wood 
Air gap 

Wind stopper 
Insulation 
Concrete 

0.021 
0.050 
0.009 
0.195 
0.100 

0.17 
- 

0.21 
0.04 
2.1 

700 
- 

789 
30 

2400 

1600 
- 

1000 
1030 
1000 

- 
0.09 

- 
- 
- 

External wall (other) 

Brick 
Air gap 

Insulation 
Concrete 

0.108 
0.021 
0.220 
0.120 

0.61 
- 

0.034 
2.1 

1800 
- 

30 
2400 

1000 
- 

1030 
1000 

- 
0.18 

- 
- 

Interior adiabatic 
wall (East) 

Insulation 
Concrete 

0.035 
0.100 

0.041 
2.1 

13 
2400 

1450 
1000 

- 
- 

Roof 

Wood 
Air gap 

Insulation 
Insulation 
Gypsum 

0.025 
0.070 
0.245 
0.045 
0.026 

0.12 
- 

0.04 
0.04 
0.25 

450 
- 

30 
30 

900 

1600 
- 

1030 
1030 
1000 

- 
0.08 

- 
- 
- 

Floor 

Insulation 
Concrete 
Insulation 

Wood 

0.300 
0.100 
0.078 
0.022 

0.041 
2.1 

0.037 
0.12 

13 
2400 

30 
450 

1450 
1000 
1030 
1600 

- 
- 
- 
- 

 

 

Fig. 2. Example of output from EnergyPlus simulation from April 1 to April 7 year 2008. The temperature Set point is kept at 22 °C. 
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2.2 The black-box model  

In each time step (minute), MATLAB received three 
inputs from EnergyPlus: Outdoor temperature [°C], 
Global Horizontal solar Radiation [W/m2] and current 
indoor temperature [°C]. The MATLAB program then 
determined a heat input [W] using a PI-controller, based 
on the indoor temperature and a temperature set point. 
The temperature set point was determined by a PRBS 
signal, within the range of comfort, which according to 
ref. [16] should be enough excitation to get a high 
performing model. The signal was created using the 
MATLAB function ‘idinput’ with a range from 20 to 24 
°C and a switching time of 1, meaning that the signal can 
change value each time step (time steps of the signal was 
one hour). Fig. 3 shows an example of three days of the 
signal. 

 

Fig. 3. Three days of PRBS signal. 

The alternative to the PRBS signal, i.e. the rule-based 
on/off signal, had a fixed excitation for four hours, from 
2 a.m. to 6 a.m. each night, as shown in Fig. 4. The on/off 
signal is a simplification compared to an actual MPC 
signal. 

 

Fig. 4. Three days of rule-based on/off signal with MPC like 
behaviour. 

A linear state space model representing the 
thermodynamics of the building was formulated:  

x[k +1] = Ax[k] + Bu[k] + Ke[k] (1) 

y[k] = Cx[k] + e[k] (2) 

 
Where k is the time index of the simulation of the control 
model (in this case an hourly time step was used), x 
represents the states of the model (in this case there was 
chosen two states), y is the output of the model (indoor 
air temperature [°C]), and u is the input-vector (outdoor 
temperature [°C], global horizontal solar radiation 
[W/m2] and system heat load [W]). The matrices A, B, C 
and K were initially estimated using the MATLAB 
subspace method N4SID, and refined with prediction-
error minimization (PEM), as it was done in ref. [1].  

3 Results 

Root Mean Square Error (RMSE) was used to evaluate 
how well the black-box model was able to perform 24-
hour predictions of the indoor temperature output from 
the EnergyPlus model. The mean and standard deviation 
of RMSE for the 11 years of simulation with system 
excitation by a PRBS signal and a night boosting signal 
is shown in Table 2 and Table 3, respectively. Both are 
validated on dataset with PRBS excitation to ensure a fair 
comparison between the two groups of models (PRBS 
and NB) and thereby ensure that the lower excitation of 
the NB-signal did not skew results.  Each column in these 
tables represents a new calibration period, and each row 
represents a new validation period. The fit in the upper 
left corner thereby shows how a model calibrated in the 
beginning of January fits the EnergyPlus output data 
from the validation period in the end of January. One row 
below shows the RMSE between a calibration made in 
January and a validation made in the last days of 
February and so on.  

 The results in Table 2 and Table 3 show that the 
black-box model is not always robust to seasonal changes 
of weather, for example when calibrating in a heating 
season (January) and validating with a transitional season 
(April, spring). However, it is seen that when calibrating 
within the heating season (for this particular building, 
November-March, where a heating demand occurs more 
than 80 % of the time, see Table 4), the RMSEs for the 
validation within these months has a mean temperature 
error below 1°C most of the time, except for validations 
in March. Results in Table 2 and Table 3 show that for 
both PRBS-models and NB-models, calibration with 
February data leads to models with most accurate 
representation of the temperature in the building during 
the heating season. On the other hand, it is seen that 
calibration in the month of March leads to models that 
perform slightly worse in the heating season than 
February models, but perform better in transitional 
periods. In transitional seasons (for this building, 
September, October, April and May) where there is still 
a demand for space heating (see Table 4), more caution 
should be taken using the model, especially in spring, as 
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it may be necessary to rely on more frequent recalibration 
of the model (at least once a month) to ensure its ability 
to accurately describe temperature conditions within the 
building.  

One reason for this may be that these periods are 
characterized by a larger variety of weather conditions, 

especially solar heat gain, which leads to larger variations 
in heating demand (see Table 4). It is seen that spring is 
characterized by slightly colder weather and slightly 
higher solar radiation compared to fall.   

 

Table 2. RMSE of 24-hour predictions of PRBS-model validated with dataset using PRBS signal. Columns represent the different 
calibration periods while each row represents a new validation period. The mean and standard deviation of the RMSE for year 2008 to 
2018 is stated in each cell. The color of the cell with the standard deviation can be different from the mean, if the standard deviation is 
high enough for the value to exceed the limit. Summer season (grey) is not relevant in terms of heating demand. 

 Calibration 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

V
al

id
at

io
n 

Jan 
0.4 0.4 0.7 0.9 1.1 64.9 5.7 607 2.5 1.1 0.6 0.5 
±0.2 ±0.2 ±0.3 ±0.4 ±0.6 ±208 ±8.5 ±1985 ±1.8 ±0.8 ±0.4 ±0.2 

Feb 
1.1 0.4 0.5 0.8 1.0 58.0 4.0 537 2.2 1.1 1.0 1.2 
±0.6 ±0.1 ±0.1 ±0.2 ±0.4 ±186 ±4.1 ±1758 ±1.3 ±0.7 ±0.5 ±0.3 

Mar 
3.0 1.6 0.6 0.8 0.9 45.8 2.9 312 1.7 1.4 2.2 3.0 
±1.5 ±0.4 ±0.1 ±0.4 ±0.2 ±147 ±2.8 ±1019 ±1.0 ±0.6 ±0.7 ±0.4 

Apr 
5.6 3.7 1.9 0.7 0.6 10.5 1.5 235 1.3 2.6 4.1 5.7 
±2.0 ±0.7 ±0.5 ±0.2 ±0.2 ±31.1 ±1.2 ±774 ±0.6 ±0.3 ±0.9 ±0.8 

May 
7.6 5.3 3.0 1.3 0.6 0.6 0.7 102 1.8 3.6 5.6 7.6 
±2.6 ±1.1 ±0.7 ±0.5 ±0.2 ±0.5 ±0.4 ±334 ±0.4 ±0.6 ±1.4 ±0.9 

Jun 
7.3 5.1 3.0 1.5 0.8 3.4 0.5 19.0 1.7 3.5 5.4 7.3 
±2.5 ±0.9 ±0.8 ±0.4 ±0.3 ±9.3 ±0.2 ±60.0 ±0.4 ±0.8 ±1.1 ±1.2 

Jul 
7.6 5.3 2.9 1.3 0.9 0.6 0.4 0.7 1.6 3.4 5.4 7.4 
±3.8 ±1.5 ±1.2 ±0.4 ±0.5 ±0.3 ±0.2 ±0.3 ±0.5 ±0.8 ±1.4 ±1.5 

Aug 
5.1 3.5 2.0 1.1 1.3 0.8 0.9 61.0 0.7 2.0 3.5 5.2 
±2.2 ±0.8 ±0.7 ±0.8 ±0.5 ±0.4 ±0.4 ±202 ±0.2 ±0.4 ±0.9 ±0.9 

Sep 
2.4 1.4 0.7 1.4 1.7 11.0 1.4 122 0.6 0.6 1.5 2.5 
±1.3 ±0.4 ±0.5 ±0.7 ±0.5 ±32.5 ±0.7 ±398 ±0.2 ±0.1 ±0.5 ±0.5 

Oct 
0.7 0.4 0.8 1.4 1.3 19.3 2.5 300 1.1 0.4 0.4 0.7 
±0.5 ±0.1 ±0.4 ±0.7 ±0.4 ±58.6 ±2.9 ±982 ±0.7 ±0.1 ±0.1 ±0.2 

Nov 
0.4 0.5 0.8 0.8 0.9 68.0 3.7 516 2.0 0.7 0.4 0.3 
±0.1 ±0.1 ±0.2 ±0.3 ±0.3 ±220 ±4.8 ±1695 ±1.3 ±0.4 ±0.1 ±0.1 

Dec 
0.4 0.4 0.7 0.8 0.9 69.6 4.5 677 2.3 0.9 0.4 0.3 
±0.2 ±0.1 ±0.1 ±0.4 ±0.2 ±224 ±5.7 ±2219 ±1.7 ±0.6 ±0.2 ±0.1 

 

Legend: 0 - 0.5 0.6 – 1.0 1.1 – 2.0 2.1 – 3.0 3.0< 
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Table 3. RMSE of 24-hour predictions of NB-models validated with dataset using PRBS signal. Columns represent the different 
calibration periods while each row represents a new validation period. The mean and standard deviation of the RMSE for year 2008 to 
2018 is stated in each cell. The color of the cell with the standard deviation can be different from the mean, if the standard deviation is 
high enough for the value to exceed the limit. Summer season (grey) is not relevant in terms of heating demand. 

 
Calibration 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

V
al

id
at

io
n 

Jan 
0.5 0.5 0.8 1.6 1.9 17.1 5.3 19.9 6.0 1.9 0.6 0.6 
±0.1 ±0.1 ±0.4 ±0.7 ±1.2 ±44.3 ±4.6 ±44.7 ±4.0 ±1.0 ±0.2 ±0.2 

Feb 
1.0 0.6 0.6 1.2 1.6 15.1 4.3 17.4 4.9 1.3 1.0 0.9 
±0.7 ±0.1 ±0.1 ±0.5 ±1.1 ±39.6 ±2.6 ±39.6 ±3.2 ±0.8 ±0.4 ±0.2 

Mar 
2.2 1.3 0.7 1.0 1.4 11.9 3.2 11.0 3.3 0.8 1.8 1.9 
±2.1 ±0.3 ±0.1 ±0.5 ±0.7 ±31.3 ±1.8 ±22.8 ±2.0 ±0.3 ±0.6 ±0.4 

Apr 
4.1 2.9 1.8 0.9 0.8 3.4 1.8 7.3 1.6 2.2 3.3 3.7 
±2.8 ±0.5 ±0.6 ±0.3 ±0.3 ±6.2 ±1.3 ±17.6 ±1.5 ±0.7 ±0.7 ±0.8 

May 
5.5 4.2 2.8 2.0 0.8 0.7 0.7 3.2 1.7 3.6 4.5 4.9 
±3.3 ±1.0 ±1.0 ±0.9 ±0.3 ±0.4 ±0.3 ±7.5 ±0.3 ±0.8 ±1.0 ±0.7 

Jun 
5.3 4.0 2.7 2.0 1.0 1.1 0.5 1.3 1.7 3.7 4.3 4.8 
±3.1 ±0.8 ±1.1 ±0.9 ±0.3 ±1.9 ±0.3 ±1.1 ±0.3 ±1.0 ±0.8 ±0.9 

Jul 
5.7 4.1 2.7 2.1 1.1 0.7 0.4 0.7 1.8 3.8 4.2 4.7 
±4.8 ±1.4 ±1.5 ±1.3 ±0.5 ±0.2 ±0.3 ±0.3 ±0.4 ±0.9 ±1.0 ±0.7 

Aug 
3.7 2.6 1.9 1.5 1.1 0.9 0.8 1.9 0.9 2.4 2.8 3.2 
±3.0 ±0.7 ±0.9 ±0.9 ±0.7 ±0.5 ±0.5 ±4.5 ±0.3 ±0.4 ±0.6 ±0.8 

Sep 
1.7 1.1 1.0 1.1 1.5 3.2 1.6 4.5 1.0 0.7 1.2 1.5 
±1.7 ±0.3 ±0.6 ±0.7 ±0.7 ±6.3 ±0.6 ±8.9 ±0.5 ±0.2 ±0.3 ±0.4 

Oct 
0.8 0.8 1.0 1.3 1.8 5.8 3.0 10.1 3.1 0.9 0.5 0.6 
±0.6 ±0.2 ±0.5 ±0.5 ±0.5 ±12.0 ±1.8 ±22.1 ±2.2 ±0.4 ±0.1 ±0.1 

Nov 
0.5 0.7 0.9 1.5 1.8 17.2 4.1 16.3 4.7 1.7 0.5 0.5 
±0.1 ±0.2 ±0.2 ±0.5 ±1.0 ±47.6 ±2.9 ±37.8 ±2.9 ±0.7 ±0.2 ±0.1 

Dec 
0.5 0.6 0.8 1.4 1.8 17.6 4.5 20.9 5.3 1.9 0.5 0.4 
±0.1 ±0.1 ±0.2 ±0.6 ±0.9 ±48.1 ±3.5 ±50.1 ±3.0 ±1.0 ±0.2 ±0.1 

 

Legend: 0 - 0.5 0.6 – 1.0 1.1 – 2.0 2.1 – 3.0 3.0< 
 

Table 4. Simulated space heating load of the case building, and inputs/output from the EnergyPlus model. First row shows mean and 
standard deviation of heat load each month for all 11 years of simulation (2008-2018). Second row shows the mean percentage of the 
time that heating is needed in calibration periods (beginning of each month). Third row shows the mean percentage of the time where 
heating is needed in validation periods (end of each month). The last three rows show mean and standard deviation of the EnergyPlus 

model inputs and outputs each month for all 11 years of simulation.  

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Heat requirement [W] 
(mean ± std) 

1712 
±183 

1592 
±167 

1154 
±153 

622 
±166 

274 
±141 

100 
±90 

47 
±46 

33 
±27 

178 
±94 

588 
±105 

1154 
±94 

1534 
±245 

Percentage of time 
with heating in 

calibration period [%] 
100 98 91 69 39 20 13 8 28 50 91 99 

Percentage of time 
with heating in 

validation period [%] 
100 96 81 52 31 26 13 13 37 69 98 100 

Outdoor temperature  
[°C] (mean ± std) 

1.5 
±1.7 

1.0 
±2.0 

3.1 
±2.0 

7.0 
±1.6 

11.4 
±1.4 

14.3 
±1.3 

16.9 
±1.2 

16.7 
±0.7 

14.0 
±1.1 

10.3 
±1.2 

6.5 
±1.2 

3.3 
±2.5 

Indoor temperature 
[°C] (mean ± std) 

22.1 
±0.1 

22.2 
±0.1 

22.6 
±0.2 

23.4 
±0.5 

24.8 
±1.1 

26.0 
±1.2 

27.2 
±1.7 

27.2 
±1.1 

25.1 
±0.9 

23.4 
±0.3 

22.5 
±0.1 

22.2 
±0.1 

Global Horizontal 
Solar Radiation  

[W/m2] (mean ± std) 

17 
±4 

43 
±7 

94 
±10 

167 
±20 

229 
±27 

245 
±27 

236 
±33 

187 
±19 

121 
±12 

61 
±8 

22 
±4 

13 
±2 
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Table 5. Comparison of PRBS-models validated with PRBS dataset, NB-models validated with PRBS and night boost dataset based 
on mean values of RMSE from the 11 years simulated. First row shows the mean and standard deviation of RMSE when calibrating 
and validating in same month (excl. summer months). Second row shows the mean and standard deviation of RMSE from calibration 
and validation within same season. Last row shows the mean and standard deviation of RMSE when calibrating in a heating season 
and validating in the transitional season and vice versa. 

 PRBS/PRBS (Table 2) Night boost/Night boost  Night boost/PRBS (Table 3) 

Calibration/ 
validation within 

same month 

0.48 
± 0.14 

0.58 
±0.23 

0.7 
± 0.21 

Calibration/ 
validation within 
same season (not 
including same 

month) 

Heating 
season: 

0.99 
± 0.84 

Transitional 
season: 

1.56 
±0.83 

Heating 
season: 

0.79 
± 0.52 

Transitional 
season: 

1.68 
±0.87 

Heating 
season: 

0.91 
± 0.51 

Transitional 
season: 

1.56 
± 0.84 

Calibration/ 
validation in 

different seasons 

 Validation 
heating 
season: 

1.24 
±0.57 

Validation 
transitional 

season: 
3.08 
±2.42 

Validation 
heating 
season: 

2.15 
±1.35 

Validation 
transitional 

season: 
2.31 
±1.68 

Validation 
heating  
season: 

2.35 
±1.57 

Validation 
transitional 

season: 
2.40 
±1.62 

Table 5 compares model performance of PRBS-
models validated on dataset with PRBS excitation, NB-
models validated on dataset with night boosting excitation 
and NB-models validated on dataset with PRBS 
excitation. The comparison shows that the performance of 
NB-models, using night boosting or PRBS validation 
data, is similar to the performance of PRBS-models, 
although PRBS-models seems slightly better when 
calibrating and validating within the same month. The 
evaluation of the NB-models indicates slightly higher 
average fit for the models compared to the PRBS-models 
using the PRBS data for validation, when calibrating in 
heating season. From comparing results of Table 2 and 
Table 3 it is seen that both PRBS-models and NB-models 
performs in par, when evaluated on the PRBS validation 
data. The performance metrics presented in Table 5 
indicate that the NB-NB evaluation is characterized by the 
lowest average RMSE, while there is less of a clear picture 
when one compares the PRBS and NB-models both 
evaluated on PRBS data.  The models calibrated and 
validated in two different seasons had, in general, the 
poorest performance. From Table 5 it is seen that the 
average RMSE on models in the heating season when 
calibrated in transitional season is 25-172% higher than 
when calibrating within the heating season, depending on 
the model type, see example from NB-models validated 
on datasets from night boosting excitation, in eq. 3. 

����� � ��	
�

��	

� ��� 
 �	� (3) 

Further, it is seen that models in the transitional season 
when calibrated in the heating season is 38-97% higher 
that when calibrating in the transitional season. From this, 
it seems that the black-box model is not robust to weather 
changes, and recalibrations between seasons is 
recommended.    

4  Discussion 

The analysis presented in this paper is based on the overall 
assumption that the RMSE of a model is a suitable 
indicator for the performance of the model when used for 
MPC. A topic of future research is to investigate whether 
this assumption is true, or whether other methods and 
metrics should be employed to determine the 
appropriateness of a model for MPC purposes. 
Furthermore, the length of the calibration period used in 
this analysis was chosen to be similar to what has been 
used in previous studies, such that it could be composed 
of full-length PRBS signals. Future research should 
investigate the necessary length of a calibration period to 
obtain a satisfactory model, and whether this length is 
affected by the choice of excitation signal. 

The results indicate that it is possible to obtain a 
suitable model using the night-boosting signal used in this 
study. This means that a heating system using MPC might 
excite the building sufficiently to generate the data needed 
for frequent recalibration of the model without the 
occupants noticing any differences in the indoor climate. 
The results thereby indicate that it is possible to avoid the 
use of the inarguably more fluctuating PRBS signals 
which risk becoming an annoyance for the occupants.  

All models, whether it is PRBS-models evaluated 
using PRBS signal, NB-models evaluated with a night 
boosting signal or NB-models evaluated with a PRBS 
signal, show similar results when calibrating and 
validating within the same season. This opens up the 
possibility of recalibrating the model in transitional 
seasons (spring and fall), where there still can be a 
relatively high heating requirement, as seen in Table 4. 
The gains of using MPC signals for recalibrating a model 
and the potential of recalibrating with such a signal in 
transitional seasons could be further investigated. 

Finally, this study considered the performance of a 
black-box model. Future studies could be to conduct a 
similar analysis for grey-box models to evaluate whether 
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a physics-based model structure is less vulnerable to 
seasonal changes in weather conditions than a black-box 
model.  

5 Conclusion 

The purpose of this paper was to evaluate the robustness 
of black-box models intended for MPC of the heating 
system to seasonal changes in weather conditions. Black-
box models were identified for a case building using 
simulated performance data from the first half of every 
month of a year. The performance of these models were 
evaluated by comparing simulation output from the black-
box model with data from the last half of each month from 
the EnergyPus simulation. The analysis used two different 
excitation signals to generate the data used to calibrate 
and validate the models: a highly fluctuating PRBS signal 
designed to generate informative data , and an arguably 
more occupant-friendly night boosting signal which was 
considered to be an approximation of the expected 
performance of an MPC for space heating. For both of 
these signals, the results suggest that models calibrated in 
the heating season leads to a satisfactory performance of 
models through almost the entire heating season. While 
models calibrated in February leads to the best model 
performance through the heating season, models 
calibrated in March perform better across both heating 
and transitional seasons. The results also show that when 
seasonal weather changes occur (especially spring), the 
black-box model loses accuracy and a recalibration is 
necessary to maintain a reasonable MPC performance. 
Because of this, it should be considered whether it is even 
feasible to operate the building using MPC for demand 
response purposes in spring since the heating demand in 
these transitional periods is also varying. The difference 
in results when exciting the building with a PRBS signal 
and a night boosting signal, respectively, is very small. 
Consequently, it should be further investigated whether an 
MPC-similar signal can be used for identification of a 
model suitable for MPC purposes, as this signal is less 
likely to lead to discomfort for the users.  
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