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Abstract. Several studies have indicated that Model Predictive Control (MPC) of space heating systems
can utilize the thermal mass of residential buildings as short-term thermal storage for various demand
response purposes. Realization of this potential relies heavily on the accuracy of the model used to represent
the thermodynamics of the building. Such models, whether they are grey box or black box, are calibrated
using relevant data obtained from initial measurements, and the performance of the calibrated model is
validated using data from a subsequent period. However, many studies use validation periods with weather
conditions similar to those of the calibration period. Only a few studies investigate whether the calibrated
model performs satisfactory when subjected to significantly different conditions. This paper presents data
from a simulation-based study on the effect of seasonal weather changes on the performance of a black-box
model. The study was conducted using 11 years of Danish weather data (2008-2018). The results indicate
that the performance of the black-box model deteriorate as the weather data conditions become increasingly
different from those used in the initial model calibration. Further, the results show that calibration in heating
season leads to satisfactory model performance through the heating season, but lower performance in
transitional seasons (especially spring). Results also show that calibration in February led to highest model
performance through heating season, while calibration in March led to satisfactory model performance in

the whole heating and fall season.

1 Introduction

Previous studies investigated the potential of using black-
box models of the thermodynamic of buildings for Model
Predictive Control (MPC) of space heating, see e.g. [1-
3], to mention a few. Here, the purpose of the MPC was
to utilise the thermal mass of buildings as thermal storage
to change the temporal heating patterns e.g. to even out
the heating demand profile of district heating systems.
The performance of the MPC for this purpose relies on
the accuracy of the model-based predictions. Previous
simulation-based studies have used a calibration and
validation period with similar weather and model
conditions to evaluate the accuracy of a model, see e.g.
[1-5]. In reality, these conditions will change over time,
both in relation to physical changes of the building and
seasonal changes in weather conditions. Only a few
studies evaluates how changes in weather conditions
affect model performance. One study changed weather
conditions by changing the location of the EnergyPlus
model representing the ‘real’ building [6]. The study
concluded that even when changing the weather
conditions, the black-box model was satisfyingly close to
the ‘measured’ values from the EnergyPlus model.
Another study simulated a whole year and counted the
number of necessary recalibrations on a black-box model
[4]. This study found that only few recalibrations were
necessary compared to the number of evaluated days,
although the number of recalibrations was higher for a
2"_order model than for a 4" or higher order model. In
ref. [7], the calibration of a grey-box model was based on
five different situations, and a cross-validation was made
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for each situation with the four remaining ones. The
results showed that a model calibrated with summer
conditions performed satisfactory in winter conditions.
However, the weather data was from Florida, where the
difference in weather conditions for a summer and winter
situation is lower than in northern Europe, for example.
Another study evaluated the influence of the choice of
calibration period by choosing various calibration
periods, (winter, mid-season and summer) in Nantes,
France, and compared the performance of a grey-box
model from these periods with the performance in
various validation periods [8]. Here, it was concluded
that the model performed best within the same season as
the calibration period.

The above-mentioned studies show quite different
results, and not all results are representative for a
northern European climate. The purpose of this paper is
therefore to extend current literature with an evaluation
of the robustness of a black-box model in relation to
seasonal weather changes in a northern European
(temperate) climate. This analysis focuses on the weather
conditions that have the largest impact on energy
consumption in buildings, namely the external air
temperature and solar radiation. The objective of the
analysis is to identify whether recalibration of the black-
box model is necessary due to changing seasons, and if
s0, to identify which period of the year that is most suited
for calibration of a model suitable for MPC of space
heating systems.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).
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2 Method

This section describes the method used to evaluate the
performance of a black-box model for MPC of space
heating systems. A detailed EnergyPlus [9] model was
used as an analogue for a real building, while the control
of the heating system was implemented in MATLAB.
Co-simulation between EnergyPlus and MATLAB was
facilitated by the building controls virtual test bed
(BCVTB) [10].

First, a pseudo-random binary sequence (PRBS)
signal was generated and used to control temperature set
point for a full-year simulation of the EnergyPlus case
building. A full-length PRBS signal was used to ensure
white noise properties [11]. The simulation was repeated
with historical weather data for 11 consecutive years
(2008-2018). A black-box model was then calibrated
each month using data from the first 15.9 days of the
month because this equals two full-length PRBS signals
of order 7 and 8, respectively. Models calibrated using a
PRBS signal will in the following sections be referred to
as PRBS-models. The calibrated models were validated
by comparing their simulation output for the last 10.6
days every month, which corresponds to the full-length
8™ order PRBS signal, with the EnergyPlus simulation
output from the same period.

In practice, an excitation with a PRBS signal can lead
to discomfort for the user, as the temperature will
fluctuate randomly during the day (Fig. 3). Therefore, the
experiment was repeated using a rule-based on/off signal
that does not fluctuate as much as the PRBS signal.

This rule-based on/off signal reflects the typical
behaviour of an MPC, inspired by [12]. As opposed to
the PRBS signal, the MPC similar signal only boosts the
heating system for a couple of hours during the night, as
illustrated in Fig. 4. Models calibrated using this night
boosting signal will in the following sections be referred
to as NB-models. The purpose of testing this alternative
signal was to evaluate whether it can substitute the use of
the more intrusive PRBS signal. The PRBS signal is
considered a more thorough test of the capabilities of the
calibrated models, therefore NB-models was validated
with the night boosting signal, as well as a PRBS signal.

2.1 Case building

The case building is an actual 81 m? single-family

residential building, which comply with the regulations
of the Danish Building Standard [13]. The entire house
was modelled as a single zone with no internal walls. The

building has three environmentally exposed facades,
illustrated in Fig. 1, and one adiabatic facade facing a
building equal to the one simulated. The properties of the
constructions were provided by the building owner, and
are given in Table 1.
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Fig. 1. Geometry of the three facades facing outside.

Furthermore, for the sake of simplicity, all windows were
modelled with the EnergyPlus class
SimpleGlazingSystem with a U-value of 0.74 W/m?K
and solar heat gain coefficient of 0.5. On the northern
facade, in Fig. 1, the window on the left is a non-
transparent door with U-value of 0.67 W/m?K. The
building is naturally ventilated with a ventilation rate of
0.3 I/s per m? and infiltration rate of 0.0024 I/s per m?,
both modelled with the EnergyPlus BLAST algorithm for
infiltration [14].

Weather data for a location in the city of
Skanderborg (longitude: 10.0, latitude: 56.05) for the 11
simulated years (2008-2018) were obtained from ref. [15]
— a service that provides EnergyPlus weather files for
custom locations throughout Denmark.

Fig. 2 illustrates how the output from the EnergyPlus
example simulation behaves as expected. For simplicity,
the example uses a constant temperature set point at 22
°C. From the example, it is seen that the heating system
is tuned off when the sun exposure is high. The indoor
temperature is in general kept around the desired 22 °C,
except for two peaks caused by the solar heat gain. The
natural ventilation system follows the wind speed and the
temperature difference between indoor and outdoor as
expected due to the BLAST algorithm.
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Table 1. Construction thermal properties.

Material Thickness Conductivity Density  Specific heat  Resistance
[m] [WAmK)] __ [kg/m’] __ [J/(kgK)] [m*K/W]
Wood 0.021 0.17 700 1600 -
Air gap 0.050 - - - 0.09
External wall (South) Wind stopper 0.009 0.21 789 1000 -
Insulation 0.195 0.04 30 1030 -
Concrete 0.100 2.1 2400 1000 -
Brick 0.108 0.61 1800 1000 -
Air gap 0.021 - - - 0.18
External wall (other) Insulation 0.220 0.034 30 1030 :
Concrete 0.120 2.1 2400 1000 -
Interior adiabatic Insulation 0.035 0.041 13 1450 -
wall (East) Concrete 0.100 2.1 2400 1000 -
Wood 0.025 0.12 450 1600 -
Air gap 0.070 - - - 0.08
Roof Insulation 0.245 0.04 30 1030 -
Insulation 0.045 0.04 30 1030 -
Gypsum 0.026 0.25 900 1000 -
Insulation 0.300 0.041 13 1450 -
Floor Concrete 0.100 2.1 2400 1000 -
Insulation 0.078 0.037 30 1030 -
Wood 0.022 0.12 450 1600 -
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Fig. 2. Example of output from EnergyPlus simulation from April 1 to April 7 year 2008. The temperature Set point is kept at 22 °C.
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2.2 The black-box model

In each time step (minute), MATLAB received three
inputs from EnergyPlus: Outdoor temperature [°C],
Global Horizontal solar Radiation [W/m?] and current
indoor temperature [°C]. The MATLAB program then
determined a heat input [W] using a PI-controller, based
on the indoor temperature and a temperature set point.
The temperature set point was determined by a PRBS
signal, within the range of comfort, which according to
ref. [16] should be enough excitation to get a high
performing model. The signal was created using the
MATLAB function ‘idinput’ with a range from 20 to 24
°C and a switching time of 1, meaning that the signal can
change value each time step (time steps of the signal was
one hour). Fig. 3 shows an example of three days of the
signal.
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Fig. 3. Three days of PRBS signal.

The alternative to the PRBS signal, i.e. the rule-based
on/off signal, had a fixed excitation for four hours, from
2 a.m. to 6 a.m. each night, as shown in Fig. 4. The on/off
signal is a simplification compared to an actual MPC
signal.
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Fig. 4. Three days of rule-based on/off signal with MPC like
behaviour.

A linear state space model representing the
thermodynamics of the building was formulated:

x[k +1] = Ax[k] + Bulk] + Ke[k] (1)
ylk] = Cx[k] + e[k] )

Where £ is the time index of the simulation of the control
model (in this case an hourly time step was used), x
represents the states of the model (in this case there was
chosen two states), y is the output of the model (indoor
air temperature [°C]), and u is the input-vector (outdoor
temperature [°C], global horizontal solar radiation
[W/m?] and system heat load [W]). The matrices A, B, C
and K were initially estimated using the MATLAB
subspace method N4SID, and refined with prediction-
error minimization (PEM), as it was done in ref. [1].

3 Results

Root Mean Square Error (RMSE) was used to evaluate
how well the black-box model was able to perform 24-
hour predictions of the indoor temperature output from
the EnergyPlus model. The mean and standard deviation
of RMSE for the 11 years of simulation with system
excitation by a PRBS signal and a night boosting signal
is shown in Table 2 and Table 3, respectively. Both are
validated on dataset with PRBS excitation to ensure a fair
comparison between the two groups of models (PRBS
and NB) and thereby ensure that the lower excitation of
the NB-signal did not skew results. Each column in these
tables represents a new calibration period, and each row
represents a new validation period. The fit in the upper
left corner thereby shows how a model calibrated in the
beginning of January fits the EnergyPlus output data
from the validation period in the end of January. One row
below shows the RMSE between a calibration made in
January and a validation made in the last days of
February and so on.

The results in Table 2 and Table 3 show that the
black-box model is not always robust to seasonal changes
of weather, for example when calibrating in a heating
season (January) and validating with a transitional season
(April, spring). However, it is seen that when calibrating
within the heating season (for this particular building,
November-March, where a heating demand occurs more
than 80 % of the time, see Table 4), the RMSEs for the
validation within these months has a mean temperature
error below 1°C most of the time, except for validations
in March. Results in Table 2 and Table 3 show that for
both PRBS-models and NB-models, calibration with
February data leads to models with most accurate
representation of the temperature in the building during
the heating season. On the other hand, it is seen that
calibration in the month of March leads to models that
perform slightly worse in the heating season than
February models, but perform better in transitional
periods. In transitional seasons (for this building,
September, October, April and May) where there is still
a demand for space heating (see Table 4), more caution
should be taken using the model, especially in spring, as
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it may be necessary to rely on more frequent recalibration
of the model (at least once a month) to ensure its ability
to accurately describe temperature conditions within the
building.

One reason for this may be that these periods are
characterized by a larger variety of weather conditions,

especially solar heat gain, which leads to larger variations
in heating demand (see Table 4). It is seen that spring is
characterized by slightly colder weather and slightly
higher solar radiation compared to fall.

Table 2. RMSE of 24-hour predictions of PRBS-model validated with dataset using PRBS signal. Columns represent the different
calibration periods while each row represents a new validation period. The mean and standard deviation of the RMSE for year 2008 to
2018 is stated in each cell. The color of the cell with the standard deviation can be different from the mean, if the standard deviation is
high enough for the value to exceed the limit. Summer season (grey) is not relevant in terms of heating demand.

+25 | 209 | +0.8 +0.4 +0.3

Calibration

Jun Jul Aug Sep Oct Nov | Dec
64.9 5.7 607 1.1

+208 +8.5 | %1985 +0.8

58.0 4.0 537 1.1 1.2
+186 | 4.1 | 1758 +0.7 +0.5 | 0.3
45.8 2.9 312 1.7 1.4

+147 | £2.8 | 1019 +0.6

10.5 1.5 235 1.3
+31.1 | £1.2 +774 +0.6

0.6 0.7 102 1.8
0.5 | 04 | 334

34 0.5 19.0 1.7 3.5 5.4 7.3
+9.3 +0.2 | 600 | 0.4 +0.8 1.1 | %12

7.6 5.3 2.9 1.3 0.9
+38 | £1.5 | #1.2 +0.4 +0.5

Validation

0.6 0.4 0.7 1.6 34 5.4 7.4
+0.3 +0.2 +0.3 +0.5 +0.8 +1.4 | 1.5

5.1 3.5 2.0 1.1 1.3
2.2 | 0.8 | 0.7 +0.8 +0.5

0.8 0.9 61.0 0.7 2.0 3.5 5.2
+0.4 +0.4 +202 +0.2 +0.4 0.9 | 0.9

11.0 1.4
+32.5 | 0.7
19.3 2.5
+58.6 | +2.9
68.0 3.7
+220 | #4.8
69.6 4.5
224 | £5.7
1.1-2.0
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Table 3. RMSE of 24-hour predictions of NB-models validated with dataset using PRBS signal. Columns represent the different
calibration periods while each row represents a new validation period. The mean and standard deviation of the RMSE for year 2008 to
2018 is stated in each cell. The color of the cell with the standard deviation can be different from the mean, if the standard deviation is
high enough for the value to exceed the limit. Summer season (grey) is not relevant in terms of heating demand.

Calibration

Jan | Feb | Mar | Apr May Jun Jul Aug Sep Oct Nov | Dec

Validation

Table 4. Simulated space heating load of the case building, and inputs/output from the EnergyPlus model. First row shows mean and

standard deviation of heat load each month for all 11 years of simulation (2008-2018). Second row shows the mean percentage of the

time that heating is needed in calibration periods (beginning of each month). Third row shows the mean percentage of the time where

heating is needed in validation periods (end of each month). The last three rows show mean and standard deviation of the EnergyPlus
model inputs and outputs each month for all 11 years of simulation.

Jan  Feb  Mar Apr May Jun Jul Aug Sep  Oct Nov  Dec
Heat requirement [W] | 1712 1592 1154 622 274 100 47 33 178 588 1154 1534

(mean =+ std) +183 %167 £153 *166 *141 +90 +46 +27 94  *105 +94 +245
Percentage of time
with heating in 100 98 91 69 39 20 13 8 28 50 91 99

calibration period [%]
Percentage of time
with heating in 100 96 81 52 31 26 13 13 37 69 98 100
validation period [%]
Outdoor temperature 1.5 1.0 3.1 7.0 114 143 169 167 140 103 6.5 33
[°C] (mean =+ std) +1.7  £2.0 20 1.6 *14 1.3 1.2 07 £l.1 £12 x12 25
Indoor temperature 22.1 222 22,6 234 248 260 272 272 251 234 225 222
[°C] (mean =+ std) +0.1 0.1 02 0.5 1.1 £1.2 x1.7 xl.1 09 03 0.1 0.1

Global Horizontal 17 43 94 167 229 245 236 187 121 61 22 13

Solar Radiation
+4 +7 +10 +20 +27 +27 +33 +19 +12 +8 +4 +2
[W/m?] (mean =+ std)
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Table 5. Comparison of PRBS-models validated with PRBS dataset, NB-models validated with PRBS and night boost dataset based
on mean values of RMSE from the 11 years simulated. First row shows the mean and standard deviation of RMSE when calibrating
and validating in same month (excl. summer months). Second row shows the mean and standard deviation of RMSE from calibration
and validation within same season. Last row shows the mean and standard deviation of RMSE when calibrating in a heating season
and validating in the transitional season and vice versa.

PRBS/PRBS (Table 2) Night boost/Night boost Night boost/PRBS (Table 3)
Calibration/
validation within 0.48 0.58 0.7
+0.14 +0.23 +0.21
same month
Cahbratlop/ . Heating Transitional Heating Transitional Heating Transitional
validation within
same season (not season: season: season: season: season: season:
including same 0.99 1.56 0.79 1.68 0.91 1.56
& +0.84 +0.83 +0.52 +0.87 +0.51 +0.84
month)
Calibration/ Validation  Validation Validation Validation Validation Validation
validation in heating transitional heating transitional heating transitional
different seasons season: season: season: season: season: season:
1.24 3.08 2.15 2.31 2.35 2.40
+0.57 +2.42 +1.35 +1.68 +1.57 +1.62

Table 5 compares model performance of PRBS-
models validated on dataset with PRBS excitation, NB-
models validated on dataset with night boosting excitation
and NB-models validated on dataset with PRBS
excitation. The comparison shows that the performance of
NB-models, using night boosting or PRBS validation
data, is similar to the performance of PRBS-models,
although PRBS-models seems slightly better when
calibrating and validating within the same month. The
evaluation of the NB-models indicates slightly higher
average fit for the models compared to the PRBS-models
using the PRBS data for validation, when calibrating in
heating season. From comparing results of Table 2 and
Table 3 it is seen that both PRBS-models and NB-models
performs in par, when evaluated on the PRBS validation
data. The performance metrics presented in Table 5
indicate that the NB-NB evaluation is characterized by the
lowest average RMSE, while there is less of a clear picture
when one compares the PRBS and NB-models both
evaluated on PRBS data. The models calibrated and
validated in two different seasons had, in general, the
poorest performance. From Table 5 it is seen that the
average RMSE on models in the heating season when
calibrated in transitional season is 25-172% higher than
when calibrating within the heating season, depending on
the model type, see example from NB-models validated
on datasets from night boosting excitation, in eq. 3.

079 100 =172

Further, it is seen that models in the transitional season
when calibrated in the heating season is 38-97% higher
that when calibrating in the transitional season. From this,
it seems that the black-box model is not robust to weather
changes, and recalibrations between seasons is
recommended.

4 Discussion

The analysis presented in this paper is based on the overall
assumption that the RMSE of a model is a suitable
indicator for the performance of the model when used for
MPC. A topic of future research is to investigate whether
this assumption is true, or whether other methods and
metrics should be employed to determine the
appropriateness of a model for MPC purposes.
Furthermore, the length of the calibration period used in
this analysis was chosen to be similar to what has been
used in previous studies, such that it could be composed
of full-length PRBS signals. Future research should
investigate the necessary length of a calibration period to
obtain a satisfactory model, and whether this length is
affected by the choice of excitation signal.

The results indicate that it is possible to obtain a
suitable model using the night-boosting signal used in this
study. This means that a heating system using MPC might
excite the building sufficiently to generate the data needed
for frequent recalibration of the model without the
occupants noticing any differences in the indoor climate.
The results thereby indicate that it is possible to avoid the
use of the inarguably more fluctuating PRBS signals
which risk becoming an annoyance for the occupants.

All models, whether it is PRBS-models evaluated
using PRBS signal, NB-models evaluated with a night
boosting signal or NB-models evaluated with a PRBS
signal, show similar results when calibrating and
validating within the same season. This opens up the
possibility of recalibrating the model in transitional
seasons (spring and fall), where there still can be a
relatively high heating requirement, as seen in Table 4.
The gains of using MPC signals for recalibrating a model
and the potential of recalibrating with such a signal in
transitional seasons could be further investigated.

Finally, this study considered the performance of a
black-box model. Future studies could be to conduct a
similar analysis for grey-box models to evaluate whether
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a physics-based model structure is less vulnerable to
seasonal changes in weather conditions than a black-box
model.

5 Conclusion

The purpose of this paper was to evaluate the robustness
of black-box models intended for MPC of the heating
system to seasonal changes in weather conditions. Black-
box models were identified for a case building using
simulated performance data from the first half of every
month of a year. The performance of these models were
evaluated by comparing simulation output from the black-
box model with data from the last half of each month from
the EnergyPus simulation. The analysis used two different
excitation signals to generate the data used to calibrate
and validate the models: a highly fluctuating PRBS signal
designed to generate informative data , and an arguably
more occupant-friendly night boosting signal which was
considered to be an approximation of the expected
performance of an MPC for space heating. For both of
these signals, the results suggest that models calibrated in
the heating season leads to a satisfactory performance of
models through almost the entire heating season. While
models calibrated in February leads to the best model
performance through the heating season, models
calibrated in March perform better across both heating
and transitional seasons. The results also show that when
seasonal weather changes occur (especially spring), the
black-box model loses accuracy and a recalibration is
necessary to maintain a reasonable MPC performance.
Because of this, it should be considered whether it is even
feasible to operate the building using MPC for demand
response purposes in spring since the heating demand in
these transitional periods is also varying. The difference
in results when exciting the building with a PRBS signal
and a night boosting signal, respectively, is very small.
Consequently, it should be further investigated whether an
MPC-similar signal can be used for identification of a
model suitable for MPC purposes, as this signal is less
likely to lead to discomfort for the users.
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